The Universe in a Matrix: Large N gauge theories, matrix models and non-commutative space-time

A. González-Arroyo

Instituto de Física Teórica UAM/CSIC Departamento de Física Teórica, UAM

January 23, 2018

¹Talk given at TIFR January 2018

A fascinating field theory I

SU(N) Yang-Mills theory in d dimension (d=4)

Euclidean Action:

$$S = \frac{1}{2g^2} \int dx \operatorname{Tr}(F_{\mu\nu}(x)F_{\mu\nu}(x))$$

where $F_{\mu\nu}(x)=i[D_{\mu},D_{\mu}]$ with $D_{\mu}=\mathbf{I}\partial_{\mu}-iA_{\mu}(x)$ the covariant derivative. $(A_{\mu}(x)\in su(N))$

Invariant under gauge transformations.

It simply defined but non-trivial QFT that

- Sits at the core of particle interactions in Nature
- Has no free parameters
- Expected to be well-defined by itself(UV complete)
- Exhibiting many non-trivial features

A fascinating field theory II

- Asymptotic freedom $\lim_{\mu \longrightarrow \infty} g_R(\mu) \longrightarrow 0$
- \bullet Dimensional transmutation (generates a mass scale quantum mechanically) Λ_{QCD}
- ullet Non-trivial spectrum (glueballs) and a mass gap M and M_i
- Confinement $E(r) = \sigma r$ (σ string tension)
- Finite temperature Phase transition T_c
- ullet Topological charge and susceptibility χ
- With quarks added: Chiral symmetry breaking, meson spectrum, U(1) problem

How to compute all these quantities?

Path-integral formulation:

$$Z = \prod_{\mu,x} \int \mathcal{D}A_{\mu}(x) \ e^{-S}$$

Not a well-defined Mathematical object.

Perturbation Theory: One can set up a calculational procedure by expanding in powers of g^2 .

Observables involving short-distances can be computed.

Most of the mass scales presented previously are zero to all orders in PT.

Clay Institute Millenium Problem

The lattice formulation

Space-Time \Rightarrow **hypercubic lattice** \mathcal{L}

Dynamical variables: SU(N) matrices $U_{\mu}(n) \equiv U(I)$ (I=link) Given a loop C:

$$U(C) = T \prod_{I \in C} U(I)$$

The partition function:

$$Z_L = \prod_{I} \left(\int dU(I) \right) e^{-S_L}$$

where the simplest action S_L (Wilson action) is

$$S_L = -\frac{1}{g_L^2} \sum_{P \in \text{plaquettes}} \text{Tr}(U(P))$$

Main observables $W(\mathcal{C}) = \frac{1}{N} \langle \operatorname{Tr} U(\mathcal{C}) \rangle$

1/N expansion

- An unexpected small parameter found by 't Hooft: 1/N
- One must scale the coupling keeping $\lambda = g^2 N$ constant.
- In Perturbation Theory the $1/N^2$ expansion corresponds to an expansion in the genus of the surface in which the diagrams can be drawn.
- The leading term is the large N theory. Only planar diagrams survive.

The large N theory is a simpler theory sharing most of the non-trivial properties of finite N. Sits at the crux of the connection between string theory and gauge theories

The large N limit of QCD

Properties	
Asymptotic freedom	
Dimensional transmutation	
Confinement	
Chiral Symmetry breaking	
Chiral P.T.	
Topological charge	
U(1) problem	
Glueball spectrum (Mass gap)	
Meson spectrum	
AdS/CFT correspondance?	
Difficult To solve	

The large N limit of QCD

Properties	
Asymptotic freedom $$	
Dimensional transmutation $\sqrt{}$	
Confinement $\sqrt{}$	
Chiral Symmetry breaking $$	
Chiral P.T. √	
Topological charge $$	
U(1) problem $$	
Glueball spectrum (Mass gap) $\sqrt{}$	
Meson spectrum $$	
AdS/CFT correspondance? $\sqrt{}$	
Difficult To solve $\sqrt{}$	

The large N limit of QCD

Properties	Simplification
Asymptotic freedom $$	Only planar diagrams
Dimensional transmutation $\sqrt{}$	No scale theory
Confinement √	Factorization
Chiral Symmetry breaking √	No dynamical quarks (Quenched)
Chiral P.T. √	No chiral logs
Topological charge $\sqrt{}$	No instantons
U(1) problem $$	$m_{\eta'}\longrightarrow 0$
Glueball spectrum (Mass gap) $$	Stable-No mixing
Meson spectrum $$	Stable + No mixing
AdS/CFT correspondance? $\sqrt{}$	Free strings/Classical gravity
Difficult To solve $\sqrt{}$	

The large N limit of QCD

Properties	Simplification
Asymptotic freedom $$	Only planar diagrams
Dimensional transmutation $\sqrt{}$	No scale theory
Confinement $$	Factorization
Chiral Symmetry breaking √	No dynamical quarks (Quenched)
Chiral P.T. √	No chiral logs
Topological charge $\sqrt{}$	No instantons
U(1) problem $$	$m_{\eta'}\longrightarrow 0$
Glueball spectrum (Mass gap) $$	Stable-No mixing
Meson spectrum $$	Stable + No mixing
AdS/CFT correspondance? √	Free strings/Classical gravity
Difficult To solve $\sqrt{}$	OOPS!

The twisted Eguchi-Kawai model TEK

$$Z = \prod_{\mu} \left(\int dV_{\mu} \right) e^{-S_{
m TEK}}$$

with

$$S_{ ext{TEK}} = -rac{N}{\lambda_L} \sum_{\mu,
u} z_{\mu
u} ext{Tr}(V_\mu V_
u V_\mu^\dagger V_
u^\dagger)$$

and
$$z_{\mu\nu} = z_{\nu\mu}^* = e^{2\pi i n_{\mu\nu}/N}$$
.

- This matrix model follows by reducing to 1 point the lattice gauge theory on a torus with twisted boundary conditions. Volume Independence
- **.** The choice of the antisymmetric twist tensor $n_{\mu\nu} \in (Z/NZ)^d$ is crutial (see later).

CLAIM:

$$\lim_{N\to\infty}\prod_{P}z(P)\langle\mathrm{Tr}(V(\mathcal{C}))\rangle\Longrightarrow W(\mathcal{C})$$

Matrix models

Explanation of the equivalence (OLD RESULTS)

First proof of equivalence (Eguchi and Kawai 1982): equality of the Schwinger-Dyson equations satisfied by loops. (Valid for all $n_{\mu\nu}$). Assumes invariance under center symmetry: $V_{\mu} \longrightarrow z_{\mu}V_{\mu}$ with $z_{\mu} \in Z_{N}$.

Is this symmetry broken spontaneously?

Weak coupling analysis (small λ_L): Symmetry is broken unless the twist tensor is irreducible.

In 4D one can choose the symmetric twist $N=\hat{L}^2$ and $|n_{\mu\nu}|=k\hat{L}$ with $\gcd(k,\hat{L})=1$. The minimum action configuration $(V_{\mu}=\Gamma_{\mu})$, where

$$\Gamma_{\mu}\Gamma_{\nu}=e^{2\pi i n_{\mu\nu}/N}\Gamma_{\nu}\Gamma_{\mu}$$

is still invariant under $Z_{\hat{i}}^d$.

• What is its physical interpretation?

Explanation of the equivalence (OLD RESULTS)

- * First proof of equivalence (Eguchi and Kawai 1982): equality of the Schwinger-Dyson equations satisfied by loops. (Valid for all $n_{\mu\nu}$). Assumes invariance under center symmetry : $V_{\mu} \longrightarrow z_{\mu}V_{\mu}$ with $z_{\mu} \in Z_{N}$.
 - Is this symmetry broken spontaneously?
- **Weak coupling analysis** (small λ_L): Symmetry is broken unless the twist tensor is irreducible.

In 4D one can choose the symmetric twist $N=\hat{L}^2$ and $|n_{\mu\nu}|=k\hat{L}$ with $\gcd(k,\hat{L})=1$. The minimum action configuration $(V_{\mu}=\Gamma_{\mu})$, where

$$\Gamma_{\mu}\Gamma_{\nu}=e^{2\pi i n_{\mu\nu}/N}\Gamma_{\nu}\Gamma_{\mu}$$

is still invariant under $Z_{\hat{i}}^d$.

What is its physical interpretation?
 Space-time degrees of freedom are embedded in the group, but HOW?

Perturbation theory for the TEK model

Beyond lowest order: $V_{\mu}=e^{-ig_{L}A_{\mu}}\Gamma_{\mu}$

Quadratic piece of the action is:

$$\operatorname{Tr}(\delta_{\mu}A_{\nu}-A_{\nu}-\delta_{\nu}A_{\mu}+A_{\mu})^{2}$$

where

$$\delta_{\mu} \Phi \equiv \Gamma_{\mu} \Phi \Gamma_{\mu}^{\dagger}$$

Crucial ingredient: A nice basis of the Lie algebra

$$\lambda^a \longrightarrow \lambda(\vec{p}) \quad / \qquad \delta_\mu \lambda(\vec{p}) = e^{ip_\mu} \lambda(\vec{p})$$

with $\vec{p} = 2\pi \vec{n}/\hat{L}$ Colour Momenta

Propagator is the same as in an \hat{L}^4 lattice

Finite N corrections in propagators look like finite volume corrections.

Perturbation theory for the TEK model

Feynman rules for Vertices:

$$f_{abc} \longrightarrow f(\vec{p}, \vec{q}, \vec{l}) \propto \delta(\vec{p} + \vec{q} + \vec{l}) \exp\{i\hat{L}\bar{k}\tilde{\epsilon}_{\mu\nu} \ p_{\mu}q_{\nu}/(4\pi)\} - (\vec{p} \leftrightarrow \vec{q})$$
 with $\bar{k}k = 1 \mod N$ and $\tilde{\epsilon}\epsilon = 1$.

- Colour Momentum conservation at the vertices
- Overall phase absent for planar diagrams.
- \clubsuit Non-planar diagrams killed by rapidly oscillating phases as $\hat{L}=\sqrt{N}\longrightarrow\infty$

Recent calculation (*Garcia Perez, GA, Okawa 2017*) of Wilson loops in L^4 lattice to order λ^2 shows the rate of vanishing.

Non Planar contribution to order λ^2

The non-planar contribution $\delta \hat{W}_{NP}$ goes to zero as $1/(L\hat{L})^4$ with a coefficient depending on \bar{k}/\hat{L} :

Notice that the choice of \bar{k} and k affects the corrections.

Non-Commutative Field Theories I

- A. Connes introduced the notion of Non-Commutative space. This is induced by generalizing the *commutative* algebra of functions on space.
- This later developped into gauge theory defined in these spaces (Connes Rieffel 1987)
- Appeared as a special limit of strings (Seiberg-Witten 1999)
- Action and Feynman rules coincide with those that we had obtained by taking the continuum version of the TEK model (GA, Korthals-Altes 1983): $\delta(q+k+l) \exp\{-i\theta_{\mu\nu}q^{\mu}k^{\nu}/2\}$ at the vertices.
- New phenomena appeared in the computation of loop integrals (UV-IR mixing Minwalla, Van Raamsdonk, Seiberg 2000)

Non-Commutative Field Theories II

- \clubsuit On the non-commutative torus for rational values of the dimensionless non-commutative parameter $\bar{\theta}_{\mu\nu}=\bar{n}_{\mu\nu}/N$, the system is equivalent to U(N) gauge theory with TBC (Morita duality).
- It was proposed to use the TEK model as a lattice regularization of non-commutative Yang-Mills (Ambjorn et al 2000).
- \clubsuit The issue of continuity in $\bar{\theta}$ was put forward (*Barbon*, *Alvarez-Gaume 2001*). Is it possible to define the theory at irrational $\bar{\theta}$ as a limit of rationals?
- The finite torus size I_{μ} eliminates the infrared singularity, but still the self-energy becomes negative and could give rise to singularities at finite values of the coupling: **Tachyonic instabilities** (*Hakayama*, *Guralnik et al*).

Is the matrix model equivalence valid?

For the equivalence to survive the continuum limit it should hold in the scaling region $Ma_L(\lambda_L)\ll 1$ but for large effective sizes $Ma_L(\lambda_L)\sqrt{N}\gg 1$

Cracks in the wall

- The potential problems associated with Tachyonic Instabilities
- Signs of center symmetry breaking observed in numerical studies of TEK at larger N. Ishikawa-Okawa(2003), Teper-Vairinhos(2007)
- Condensation observed in numerical results using TEK as a non-perturbative definition of NC field theory. (Bietenholz et al 2006)

All problems avoided if k/\sqrt{N} and \bar{k}/\sqrt{N} kept bigger than a certain value in the large N limit (GA-Okawa 2010).

- No symmetry breaking observed up to $N = 1369 = 37^2$
- Direct test of equivalence on the lattice(AGA, Okawa 2014):
 - a) Measuring Wilson loops in a big lattice ($L^4=16^4$) with periodic boundary conditions and various N (N=8-16) and extrapolating the results to infinite N (2nd degree polynomial in $1/N^2$).
 - b) Measure the loops on the matrix model.

For the plaquette:

$\lambda_L = 1/0.36$ extrapolated	# dofs=1.7 10 ⁷
TEK <i>N</i> = 289	# dofs= $0.8 \ 10^5$

The same happens for other loops and at other couplings.

- No symmetry breaking observed up to $N = 1369 = 37^2$
- Direct test of equivalence on the lattice(AGA, Okawa 2014):
 - a) Measuring Wilson loops in a big lattice ($L^4=16^4$) with periodic boundary conditions and various N (N=8-16) and extrapolating the results to infinite N (2nd degree polynomial in $1/N^2$).
 - b) Measure the loops on the matrix model.

For the plaquette:

$\lambda_L = 1/0.36$ extrapolated	0.55801(1)	# dofs=1.7 10 ⁷
TEK $N = 289$	0.55800(1)	# dofs= $0.8 \ 10^5$

The same happens for other loops and at other couplings.

- No symmetry breaking observed up to $N = 1369 = 37^2$
- Direct test of equivalence on the lattice(AGA, Okawa 2014):
 - a) Measuring Wilson loops in a big lattice ($L^4=16^4$) with periodic boundary conditions and various N (N=8-16) and extrapolating the results to infinite N (2nd degree polynomial in $1/N^2$).
 - b) Measure the loops on the matrix model.

For the plaquette:

$\lambda_L = 1/0.36$ extrapolated		
TEK <i>N</i> = 289	0.55800(1)	$\# \text{ dofs} = 0.8 \ 10^5$

The same happens for other loops and at other couplings.

Tests of validity in the continuum limit.
 We also measured the string tension in both theories:

- No symmetry breaking observed up to $N = 1369 = 37^2$
- Direct test of equivalence on the lattice(AGA, Okawa 2014):
 - a) Measuring Wilson loops in a big lattice ($L^4=16^4$) with periodic boundary conditions and various N (N=8-16) and extrapolating the results to infinite N (2nd degree polynomial in $1/N^2$).
 - b) Measure the loops on the matrix model.

For the plaquette:

$\lambda_L=1/0.36$ extrapolated	0.55801(1)	# dofs=1.7 10 ⁷
TEK <i>N</i> = 289	0.55800(1)	# dofs= $0.8 \ 10^5$

The same happens for other loops and at other couplings.

• Tests of validity in the continuum limit.

We also measured the string tension in both theories:

Yang-Mills in $T_2 \times \mathbb{R}$

- \clubsuit Hamiltonian picture: $I \times I$ spatial torus with twist $n_{\mu\nu} = k\epsilon_{\mu\nu}$.
- A Center symmetry is now Z_N^2 . States are labelled by IRREP: $\vec{e} \in (\mathbb{Z}/N\mathbb{Z})^2$. electric flux
- Dependence of lowest Energy states on the parameters:

$$E(\vec{e}, N, k, l, \lambda) = \lambda \mathcal{E}(\vec{e}, N, k, x)$$

with
$$x = NI\lambda/(4\pi)$$
.

What do we know and expect?

For small sizes ($l\lambda \ll 1$) Perturbation Theory is a good approximation.

The leading order is a free gluon gas $\mathcal{E} \sim |\vec{n}|/2x$ where $\vec{n} = N||k\vec{e}_T/N||$

Yang-Mills in $T_2 \times \mathbb{R}$

At the next order in λ the main contribution is the self-energy term:

$$\mathcal{E}^{2}(\vec{e}, N, k, x) = \frac{|\vec{n}|^{2}}{4x^{2}} - \frac{G(\vec{e}, N)}{x} \sim \frac{|\vec{n}|^{2}}{4x^{2}} - \frac{1}{16\pi^{2}x|\vec{e}/N|^{2}} + R$$

G is positive and predicts a *tachyonic instablity* at $x = x_c$

Can one avoid the singularity by tuning k? $|n| \nearrow \Rightarrow x_c \nearrow$

At large volumes $\lambda l\gg 1$ one expects the **CONFINEMENT** behaviour

$$\mathcal{E} o rac{\sigma(\vec{e}, N, k, x)}{\lambda} I = 4\pi rac{\sigma}{\lambda^2} x \chi(\vec{e}/N)$$

where $\chi(x) \sim x$ determines the k-string spectrum. $\frac{\sigma}{\lambda^2} = \frac{\tau}{8\pi}$. The correction to this term (Luscher term) is an x independent constant added to \mathcal{E}^2 (exact in Nambu-Goto)

Yang-Mills in $T_2 \times \mathbb{R}$

What happens at intermediate values of λ /? Are there tachyonic instabilities?

Analyze the problem by a lattice simulations exploring all dependencies: $L=1,\ldots 28,\ N=5,7,11,13,17,34,89$ and many k values and many values of λ_L $(x\in[0.2,7])$

RESULTS Garcia-Perez, GA, Koren, Okawa 2013, 2018

- Continuity in $\bar{\theta} = \bar{k}/N$ for n fixed.
- Behaviour at intermediate values well described by analytic function obtained by adding the perturbative and confining terms F(nx, Z(n, k, N)), where $Z = n||n\bar{k}/N||$.
- In the e=0 sector (glueball) for x>3 Torelon-torelon states (states of opposite electric fluxes), coexist with a new state having constant energy $M/\lambda \sim 0.85$ and coupling mostly to Wilson loops.

Size dependence of energies N = 17 k = 3

Consequences

Having an analytic expression for the energies allows us to explore its behaviour at large N. The minimum energy is a function of Z: $\mathcal{E}_{\min}(n) = \phi(Z) \sim \mathcal{A}(Z-0.1)$. Thus the condition not to have tachyonic instabilities is

$$\min_{n} \mathcal{E}_{\min}(n) > 0 \quad \Rightarrow \quad Z_{\min} \equiv \min_{n} n ||n\bar{k}/N|| > 0.1$$

This leads to the following conclusions Chamizo GA 2017

- Can one choose a k for any N without tachyonic instabilities?

 ⇒ Zaremba conjecture (1974).
- \bullet For almost any N $Z_{\rm min}>1/7$ Huang 2015 .
- The best sequence that maximizes the minimal energy is given by the Fibonacci numbers: $N=F_p$ and $k=\bar{k}=F_{p-2}$
- The set of irrationals θ such that $\bar{k}_p/N_p \longrightarrow \theta$ and has no T.I. is a set of Haussdorff dimension $d_H \sim 0.7 < 1$ (N.C.)
- This seems to extend to defining a subleading continuous non-planar correction to Wilson loops in 4 dimensions.

Non-planar correction to plaquette

Conclusions

- TEK model provides a way to study Yang-Mills at large N which is at least competitive with extrapolations. List of possible observables: Meson spectrum, Finite T_c , condensate, glueball spectrum(?)
- The approach to infinite N is connected to theories in Non-commutative space. The choice of flux k is non-trivial. $Z_{\min}(\bar{k},N)$ plays a crucial role.
- The twisted reduction mechanism allows Matrix models for many other interesting theories at large N: Adjoint-QCD with quarks in the adjoint, QCD in the Veneziano limit, Principal chiral models. No competitive extrapolation for theories with dynamical fermions.
- Many things are yet to be clarified at the theoretical level.
 Supersymmetric extensions remain a challenge.

Glueball mass

Comparisons Fibonacci

N-dependence of plaquette e.v.

We studied the plaquette (R = T = 1) at b = 0.36 at various L and N. This is a very precise quantity (errors 10^{-5}).

N-dependence of plaquette e.v.,

We studied the plaquette (R=T=1) at b=0.36 at various L and N. This is a very precise quantity (errors 10^{-5}). For periodic boundary conditions (k=0)

N-dependence of plaquette e.v.

We studied the plaquette (R=T=1) at b=0.36 at various L and N. This is a very precise quantity (errors 10^{-5}). For periodic boundary conditions (k=0)

N-dependence of plaquette e.v.,

We studied the plaquette (R=T=1) at b=0.36 at various L and N. This is a very precise quantity (errors 10^{-5}). For periodic boundary conditions (k=0)

N-dependence of plaquette e.v.,

We studied the plaquette (R = T = 1) at b = 0.36 at various L and N. This is a very precise quantity (errors 10^{-5}). For periodic boundary conditions (k = 0)

N-dependence of plaquette e.v.

We studied the plaquette (R = T = 1) at b = 0.36 at various L and N. This is a very precise quantity (errors 10^{-5}). For periodic boundary conditions (k = 0)

N-dependence of plaquette e.v.

We studied the plaquette (R = T = 1) at b = 0.36 at various L and N. This is a very precise quantity (errors 10^{-5}). And twisted boundary conditions $k \neq 0$ (TEK L = 1)

N-dependence of TEK

We tried various values of $N=\hat{L}^2$

N-dependence of TEK

We tried various values of $N = \hat{L}^2$

N-dependence of TEK

We tried various values of $N = \hat{L}^2$

Other values of b and R

The result extends to other values of b: Example b = 0.37: The $1/N^2$ is approximately universal

Other values of b and R

The same is true about other Wilson loops R = 2, 3, 4

A final view

