DEEP UNDERGROUND NEUTRINO EXPERIMENT

Precision neutrino oscillation physics with DUNE

Chris Marshall, LBNL Tata Institute of Fundamental Research ASET colloquium 28 February, 2020

Tata Institute of Fundamental Research

Big picture question: What happened to the antimatter?

CP symmetry must be violated for matter-antimatter asymmetry

 Charge-parity "CP" symmetry = physics invariant for particle ↔ antiparticle + mirror image transformation

Where is the CP violation to explain the imbalanced universe?

- CP violation has been observed in the quark sector, but it is far too small to explain the asymmetry
- If neutrinos violate CP, they could be responsible for the asymmetry
- If neutrinos do not violate CP, it is a strong indication of some new physics where the CP violation is hiding

Outline

- Neutrinos & neutrino oscillations
 - What we know and how we know it
 - The missing pieces, including CP violation
 - How we measure neutrino oscillations and why it's hard
- The Deep Underground Neutrino Experiment (DUNE)
 - Precision neutrino oscillation physics

Neutrinos are neutral, weaklyinteracting leptons

- Neutrinos have no electric charge
 - No strong or electromagnetic forces – only weak interactions
 - Very difficult to study neutrinos – they do not interact with detectors
- Neutrinos have (almost) no mass

.....

Neutrinos interactions are weak

Neutrinos interactions are weak

Neutrinos come in three flavors, corresponding to charged leptons

Neutrino "oscillation"

Many experiments over the past 20 years have measured v oscillations

LAWRENCE BERKELEY NATIONAL LABORATOR

Neutrinos are born (and die) in states of definite flavor

Flavor eigenstates

Neutrinos live in states of definite mass

Neutrino oscillation requires mixing and mass differences

Flavor eigenstates

Mass eigenstates

- Observation of neutrino oscillations implies that
 - U_{PMNS} is not diagonal
 - The masses of v_1 , v_2 , v_3 are not equal

Quarks mix, but neutrinos mix more

- Mixing is not unique to neutrinos quarks mix too!
- We have measured these matrices, and we find that neutrinos mix a lot more than quarks

Measuring neutrino oscillations: probability vs. L/E

Measuring neutrino oscillations: probability vs. L/E

The PMNS matrix can be parameterized in terms of angles

Flavor eigenstates

Mass eigenstates

What we know

What we know

What we know

Unknown: Do neutrinos violate CP symmetry? Is $\delta_{CP} = 0$?

- CP violation is a crucial ingredient in generating the matter-antimatter asymmetry observed in the universe
- If neutrinos violate CP, they could be responsible for the matter-antimatter asymmetry
- If not, that means there is probably some new physics responsible for the matter-antimatter asymmetry

Unknown: What is the mass ordering? Is v_3 heaviest or lightest?

 We know there is one very small mass difference and one (relatively) large one

.....

quarks

- We don't know whether v₃ is the lightest (normal ordering) or the heaviest (inverted ordering)
- Data in the last two years show a weak preference for the normal ordering

Mass difference
$$\Delta_{ij} = \Delta m_{ij}^2 L/4E_{
u}$$

• The oscillation probability for $v_{\mu} \rightarrow v_{e}$ depends on δ_{CP}

...And a lot of other stuff

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\simeq \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2} \\ &+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \cos(\Delta_{31} + \delta_{CP}) \\ &+ \cos^{2} \theta_{23} \sin^{2} \theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2} \end{split}$$
H. Nunokawa, S. J. Parke, and J. W. Valle, Matter density $a = G_{F} N_{e} / \sqrt{2}$

H. Nunokawa, S. J. Parke, and J. W. Valle, Prog.Part.Nucl.Phys., vol. 60 (2008)

Mass difference $\Delta_{ij} = \Delta m_{ij}^2 L/4E_{\nu}$

- The oscillation probability for $v_{\mu} \rightarrow v_{e}$ depends on δ_{CP} and all the other parameters!
- Measuring δ_{CP} requires precise knowledge of everything else

Mass ordering = sign of $\Delta 31$

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2} \\ &+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \cos(\Delta_{31} + \delta_{CP}) \\ &+ \cos^{2}\theta_{23} \sin^{2}\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2} \end{split}$$

H. Nunokawa, S. J. Parke, and J. W. Valle,
Prog.Part.Nucl.Phys., vol. 60 (2008)
H. Nunokawa, S. J. Parke, and J. W. Valle,
Prog.Part.Nucl.Phys., vol. 60 (2008)
H. Nunokawa, S. J. Parke, and J. W. Valle,
Prog.Part.Nucl.Phys., vol. 60 (2008)
H. Nunokawa, S. J. Parke, and J. W. Valle,
Prog.Part.Nucl.Phys., vol. 60 (2008)
H. Nunokawa, S. J. Parke, and J. W. Valle,
Prog.Part.Nucl.Phys., vol. 60 (2008)
H. Nunokawa, S. J. Parke, and J. W. Valle,
Prog.Part.Nucl.Phys., vol. 60 (2008)
Prog.Part.Nucl.Phys., vol. 60 (2008)
H. Nunokawa, S. J. Parke, and J. W. Valle,
Prog.Part.Nucl.Phys., vol. 60 (2008)
H. Nunokawa, S. J. Parke, and J. W. Valle,
Prog.Part.Nucl.Phys., vol. 60 (2008)
H. Nunokawa, S. J. Parke, and J. W. Valle,
Prog.Part.Nucl.Phys., vol. 60 (2008)
H. Nunokawa, S. J. Parke, and J. W. Valle,
Prog.Part.Nucl.Phys., vol. 60 (2008)
H. Nunokawa, S. J. Parke, and J. W. Valle,
Prog.Part.Nucl.Phys., vol. 60 (2008)
H. Nunokawa, S. J. Parke, and J. W. Valle,
Prog.Part.Nucl.Phys., vol. 60 (2008)
H. Nunokawa, S. J. Parke, and J. W. Valle,
Prog.Part.Nucl.Phys., vol. 60 (2008)
H. Nunokawa, S. J. Parke, and J. W. Valle,
Prog.Part.Nucl.Phys., vol. 60 (2008)
Prog.Part.Phys.

Mass difference $\Delta_{ij} = \Delta m_{ij}^2 L/4E_{
u}$

- Mass ordering and CP-violating phase are degenerate for baseline up to ~1200 km → want very long baseline
- Matter matters: v_e feel an additional potential due to electrons in the earth

Matter and δ flip sign for v_{i} $P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \simeq \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Delta_{31} + aL)}{(\Delta_{21} + aL)^{2}} \Delta_{31}^{2}$ $+\sin 2\theta_{23}\sin 2\theta_{13}\sin 2\theta_{12}\frac{\sin(\Delta_{31}+aL)}{\Delta_{21}+aL}\Delta_{31}\frac{\sin(aL)}{aL}\Delta_{21}\cos(\Delta_{31}-\delta_{CP})$ $+\cos^2\theta_{23}\sin^2\theta_{12}\frac{\sin^2(aL)}{(aL)^2}\Delta_{21}^2$ Matter density $a = G_F N_e / \sqrt{2}$ H. Nunokawa, S. J. Parke, and J. W. Valle, Prog.Part.Nucl.Phys., vol. 60 (2008) Mass difference $\Delta_{ij} = \Delta m_{ij}^2 L/4E_{\nu}$

- Matter terms and CP-violating term flip sign for antineutrino oscillations
- Incredibly valuable to be able to measure both $P(v_{\mu} \rightarrow v_{e})$ and $P(v_{\mu} \rightarrow v_{e})$

Non-zero δ_{CP} changes oscillation probabilities for v and \overline{v}

Experimental requirements to measure δ_{CP}

Intense, broadband neutrino beam

Separate µ from e

Huge detector at L > 1200km Precise measurement of neutrino energy

DEEP UNDERGROUND NEUTRINO EXPERIMENT

- Intense neutrino source from upgraded Fermilab accelerator, switchable between neutrino and antineutrino beams
- 70,000 ton far detector in Lead, South Dakota, 1300 km from source
- Highly capable near detector facility at Fermilab, 500 m from source
- Currently digging holes, fully operational in 2026

The DUNE international collaboration

1132 collaborators
 from 188 institutions
 in 31 countries
 (+CERN)

Making neutrinos starts with an upgraded accelerator

- Upgraded Fermilab accelerator to produce proton beam with intensity up to 2.4 MW
- New magnets being designed and built in India at BARC, IUAC, RRCAT, and VECC

Making neutrinos

Making neutrinos

Protons interact in a graphite target

Toward detectors

NATIONAL LABORATORY

35 Chris Marshall (LBNL)

BERKELE

Making neutrinos

Proton-carbon interactions produce charged pions & kaons

Toward detectors

36 Chris Marshall (LBNL)

BERKELE
Making neutrinos

Magnetic horns focus one sign into a decay pipe, and defocus the other

nto a Toward detectors

Making neutrinos

Toward detectors

μ

38 Chris Marshall (LBNL)

Intense, broadband

neutrino beam

BERKELE

Making antineutrinos

Underground far detectors: 70,000 tons at L = 1300 km

The Far Detector: 70 kiloton Liquid Ar Time Projection Chamber

LAr TPC technology

MicroBooNE JINST 12.10 (2017)

LAr TPC can identify μ & e, measure energy of v interaction products

DUNE can measure $v_{\mu} \rightarrow v_{e}$ with ~3% statistical uncertainty

- δ_{CP} sensitivity is due to v_e/v_e samples
- v_{μ} "disappearance" sample for precision measurements of other oscillation parameters

mm

Systematics must be constrained at the level of ~3%

- Oscillations occur as a function of true neutrino energy
- But detector measures event rate = flux x cross section, as a function of visible energy
- Uncertainties in neutrino-argon cross sections, and the relationship between neutrino energy and visible energy are crucial
- Measure it with the near detector

DUNE requires a highly capable near detector system

Intense, broadband neutrino beam

Huge detector

at L > 1200km

Switchable between v_{μ} and v_{μ}

Separate µ from e

Precise measurement of neutrino energy

Measure initial v flux

Measure v interactions

Monitor the neutrino beam

Near Detector discussion meeting this week

DUNE Near Detector discussion meeting

27-29 February 2020 Tata Institute of Fundamental Research, Mumbai, INDIA Asia/Calcutta timezone

- Three-day meeting to discuss DUNE near detector will conclude tomorrow
- Interesting discussions on many aspects of the ND program, with particular focus on collaboration with TIFR and Indian institutions

The DUNE Near Detector: precision systematic constraints

- LAr TPC functionally similar to far detector
- Magnetized, high-pressure gaseous Ar TPC with highperformance calorimeter
- Magnetized plastic scintillator tracker & on-axis beam monitor

ArgonCube: pixelated LAr TPC to measure v-Ar interactions

Chris Marshall (LBNL)

49

 >50M neutrino interactions per year – will be the largest sample ever collected

 Study cross sections in very similar detector to FD

High-pressure gaseous argon TPC: v-Ar interactions in exquisite detail

Pressure vessel for HPgTPC design from BARC

- Vessel must be very large to accommodate 5m TPC radius, and very thin so that photons do not shower
- Leads to complicated engineering requirements, currently under design at BARC

Magnet system for gaseous TPC

- Reference is 5-coil superconducting Helmholtz design, but optimization is still ongoing
- Potential for collaboration between India, Italy, and United States

ND in the underground facility

Directly probing E_v-dependence with a movable ND

- Due to the pion decay kinematics, the neutrino flux is peaked at lower energies if you look off-axis
- The ND will slide 33m off-axis to access many different flux spectra, directly measuring effects that depend on E_v

Estimated sensitivity to δ_{CP}

- DUNE's resolution is 13-25 degrees after 7 years, depending on the true value
- After 15 years, the resolution is ~8 degrees at CP-conserving values, and ~16 degrees at maximallyviolating values

m

CP violation and mass ordering

CP Violation Sensitivity

Mass Ordering Sensitivity

• >5 σ discovery potential for $\delta_{CP} \neq 0$ for >50% of true values

• Definitive mass ordering determination regardless of true values of parameters

min

Lots of physics, too little time

- DUNE is sensitive to nucleon decay, and competitive with existing limits in many channels
- Supernova neutrinos, if we get lucky
- Numerous other physics searches beyond the Standard Model, including:
 - Sterile neutrinos
 - Light dark matter
 - Neutrino tridents
 - Non-standard interactions

Conclusions

- DUNE brings neutrino physics to the precision era:
 - Measurement of $\delta_{\rm CP}$, and discovery of CP violation in neutrino sector if it is sufficiently large
 - Determination of the neutrino mass ordering
 - Precise measurements of oscillation parameters
- Measurement is very challenging: requires intense beam; huge, highly-capable far detector; precision near detector
- DUNE is designed to overcome these challenges

Thank you!

DUXE

Tata Institute of Fundamental Research

60 Chris Marshall (LBNL)

BERKELEY LAB

Computing: a worldwide effort

Wall time-weighted: 56% US

ENL/SDCC-CE01
UColorado_HEP
NWICG_NDCMS
GLOW
BNL:ATLAS
Crane
OCSDT2
50-ITS-CE3
Nebraska
● SU-ITS-CE2
MWT2
AGLT2
 UFlorida-HPC
 UKI-NORTHGRID-M4
UKI-SOUTHGRID-RAL
UKI-SCOTGRID-ECDIF
UKI-LT2-IC-HEP
RAL-LCG2
UKI-NORTHGRID-UM
UKI-SOUTHGRID-OX
UKI-NORTHGRID-LAN
🔶 LIKI-I, 72-QMUI,
CERN-PROD
SURFsara
NIKHEF-ELPROD
• pic
OEMAT-LCG2
● FZU
 IN2P3-CC

- DUNE computing is distributed all over the world
- About 50% of DUNE's overall computing is done in the United States
- Discussions are underway about using the computing cluster at TIFR for DUNE

• Updated analyses with full simulation & reconstruction will be presented in upcoming TDR

Supernova burst neutrinos

BSM searches

- Sterile neutrinos
- Light dark matter
- Boosted dark matter
- Non-standard interactions
- Neutrino tridents
- Large extra dimensions
- Likely much more!

.....

Sakharov conditions for dynamical baryon asymmetry

- Baryon number violation
- C- and CP-symmetry violation
 - C-symmetry would balance the interactions that produce more baryons with interactions that produce more antibaryons
 - CP-symmetry would ensure equal numbers of left-handed baryons and right-handed antibaryons, and vice versa
- Interactions out of thermal equilibrium
 - Otherwise CPT symmetry would balance processes increasing and decreasing the baryon asymmetry

ProtoDUNE: prototyping the DUNE far detector design

- Two prototype detectors located at CERN neutrino platform
- Single phase and dual phase
- Test detector

 engineering, and
 also hadron beam
 physics program

ProtoDUNE-SP

- Full scale prototype – same voltage, drift distance as DUNE SP
- Test of design, installation, operation, stability
- Measure hadron response in LAr

68 Chris Marshall (LBNL)

tifr

ProtoDUNE-SP

Chris Marshall (LBNL)

69

- Beam physics run Sep 21 – Nov 11
- Pions, protons, electrons, kaons from 0.3-7 GeV, total ~4M triggers
- Achieved stable running at 180kV, ~8ms electron lifetime, ~600 ENC noise → S/N ~ 38

.....

ProtoDUNE-SP event display

ProtoDUNE-DP

- Complete dual-phase detector assembled in cryostat since March 2019
- Purging, cooling, filling this summer
- End of filling will be ~August

BE

Two detector technologies

- Single phase: all liquid, charge read out by two induction wire planes and one collection plane
- Dual phase: Charge drifts vertically, amplified and read out in gas phase for larger signal/noise

mm
Profile of 17 kiloton module

- 2 cathode planes

 → 4 drift regions
 each ~3.6m
- 500 V/cm field = 180 kV potential

CP sensitivity

MH sensitivity

Mass Ordering Sensitivity

Mass Ordering Sensitivity

mm

BER

LAWRENCE BERKELEY NATIONAL LABORATOR

• blah blah blah

DUNE will reach reactor precision of θ_{13} with full data set

mm

Mass ordering in ~2 years

CP Violation Sensitivity

Mass Ordering Sensitivity

.....

LAWRENCE BERKELEY NATIONAL LABORATOR

• DUNE will make world-leading measurements throughout its program

FD oscillated flux matching with offaxis ND spectra

Reproduce FD flux with linear combinations of ND samples

- By taking linear combinations of spectra at different off-axis angles, we can create pseudo-monoenergetic beams
- Or we can create a replica oscillated FD flux for some set of oscillation parameters

• LAr TPC can "see" ionization energy deposited by charged particles, and measure this energy

•
$$E_{\nu} = E_{\mu} + E_{\pi^{\pm}} + E_{\pi^{0}} + E_{p} + E_{n} + \dots$$

- Leptons, pions, and protons are all seen by DUNE, and can be reconstructed, albeit with somewhat different response functions
- $E_{\nu} = E_{\mu} + E_{\pi^{\pm}} + E_{\pi^{0}} + E_{p} + E_{n} + \dots$

- Neutrons show up as small blips in the detector, and their energy is mostly lost, i.e. "missing energy"
- $E_{v} = E_{\mu} + E_{\pi^{\pm}} + E_{\pi^{0}} + E_{p} + E_{n} + \dots$

- If you change the composition of the final state, i.e. if there are more neutrons and fewer protons, then the reconstructed energy will be impacted
- $E_{\nu} = E_{\mu} + E_{\pi^{\pm}} + E_{\pi^{0}} + E_{p} + E_{n} + \dots$

- Muon neutrino beam produced at Fermilab and measured in northern Minnesota
- A deficit is observed due to $v_{\mu} \rightarrow v_{\tau}$ oscillations

$\overline{\mathbf{v}}_{e}$ disappearance at Daya Bay

- Nuclear reactors provide excellent source of "free" electron antineutrinos from beta decays
- Daya Bay measures neutrinos from six reactor cores, with four detectors at a distance of 2 km
- Four near detectors

 measure the initial
 neutrino spectrum very
 near the cores

Far detectors see fewer \overline{v}_{e} s

- Daya Bay is only sensitive to electron neutrinos
- Observe fewer at the far detectors than is expected based on near detector rate
- v_es oscillate to other flavors

mm

Event mixture in DUNE oscillation sample is very different from T2K

- GENIE "DefaultPlusValenciaMEC" on Ar
- DUNE oscillation peak region is roughly 40% 0 π , 40% 1 π , 20% 2+ π
 - Compared to T2K \sim 85% 0 π
- Huge amount of theory work has dramatically improved our modeling of $CC0\pi$ we need this same commitment to 1π , 2π , SIS/DIS, etc. for DUNE

Flux uncertainty principal component analysis

- The largest HP & focusing uncertainties show up as principal components of the full flux covariance
- The largest 30

 components are
 treated as nuisance
 parameters in DUNE
 TDR sensitivity
 analysis

E_v resolution vs. (E_e , θ_e)

- Energy resolution is quite good in a region of (E,θ), basically where Eθ² is very small
- Effectively, select a subsample of good, and unbiased energy resolution and measure shape from it
- Requires very high statistics

v+e scattering signal and backgrounds in E,θ

- Signal is subject to kinematic constraint $E_e \theta_e^2 < 2m_e$
- Dominant background is v_e CC at very low Q²
- But background shape in E, θ is very different from signal, and realistic uncertainties on background shape still do not produce signal-like distribution

2D templates for v+e signal

• Each template is a bin of neutrino energy, and adds events in (E,θ)

DUNE ND v+e statistics

- DUNE LAr ND at ~50t F.V. will have ~15k events in 3 years, even with very conservative thresholds
- >100x more statistics than MINERvA LE analysis

.....

Far detector event selection: FHC v_e CVN probability

Neutrino oscillation probability

- The goal of any neutrino oscillation experiment:
 - Measure the flux of neutrinos of flavor β at a distance *L*
 - Compare it to the flux of neutrinos of flavor α at the source
 - As a function of neutrino energy
 - Disappearance ($\alpha = \beta$) and appearance ($\alpha \neq \beta$)

We measure neutrino interactions, not fluxes directly Neutrino source

$$N(E_{\nu}) = \Phi(E_{\nu}) \times \sigma(E_{\nu}) \times \epsilon(E_{\nu})$$

- Observed interaction rate, *N*, depends on fluxes, but also cross sections (σ), and detector acceptance (ε)
- Cross sections, in particular, are highly uncertain

Energy reconstruction is challenging

Neutrino source

$$N(E_{reco}) = \int \Phi(E_{\nu}) \times \sigma(E_{\nu}) \times \epsilon(E_{\nu}) \times \mathbf{D}(E_{\nu} \to E_{reco}) dE_{\nu}$$

- And the observed rate is measured as a function of *reconstructed* energy, which is connected to neutrino energy E_v by some smearing matrix **D**
- This matrix dependent on your particular detector, but also depends strongly on neutrino interactions

Uncertainties are reduced with near detector measurements

$$\frac{N^{far}(E_{reco}) = \int \Phi(E_{\nu}, L) \times \sigma(E_{\nu}) \times \epsilon(E_{\nu}) \times \mathbf{D}(E_{\nu} \to E_{reco}) dE_{\nu}}{N^{near}(E_{reco}) = \int \Phi(E_{\nu}, 0) \times \sigma(E_{\nu}) \times \epsilon(E_{\nu}) \times \mathbf{D}(E_{\nu} \to E_{reco}) dE_{\nu}}$$

• Near detector in the same flux, with the same nuclear target, and a similar detector technology, will constrain many uncertain parameters

BERKE

But there is no magical "cancellation"

$$N_{\nu_{\beta}}^{far}(E_{reco}) = \int \Phi_{\nu_{\beta}}(E_{\nu}, L) \times \sigma_{\nu_{\beta}}(E_{\nu}) \times \epsilon_{\nu_{\beta}}^{far}(E_{\nu}) \times \mathbf{D}_{\nu_{\beta}}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$

$$N_{\nu_{\alpha}}^{near}(E_{reco}) = \int \Phi_{\nu_{\alpha}}(E_{\nu}, 0) \times \sigma_{\nu_{\alpha}}(E_{\nu}) \times \epsilon_{\nu_{\alpha}}^{near}(E_{\nu}) \times \mathbf{D}_{\nu_{\alpha}}^{near}(E_{\nu} \to E_{reco}) dE_{\nu}$$

- There are many differences between the observed interaction rates at the near and far detectors, which lead to systematic uncertainties:
 - Fluxes are different primarily due to oscillations
 - Cross sections are strongly energy-dependent, potentially different nucleus, or different neutrino flavor
 - Even if ND and FD are "functionally identical," acceptance and energy reconstruction will be somewhat different due to the sizes

But there is no magical "cancellation"

?

$$N_{\nu_{\beta}}^{far}(E_{reco}) = \int \Phi_{\nu_{\beta}}(E_{\nu}, L) \times \sigma_{\nu_{\beta}}(E_{\nu}) \times \epsilon_{\nu_{\beta}}^{far}(E_{\nu}) \times \mathbf{D}_{\nu_{\beta}}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$
$$N_{\nu_{\alpha}}^{near}(E_{reco}) = \int \Phi_{\nu_{\alpha}}(E_{\nu}, 0) \times \sigma_{\nu_{\alpha}}(E_{\nu}) \times \epsilon_{\nu_{\alpha}}^{near}(E_{\nu}) \times \mathbf{D}_{\nu_{\alpha}}^{near}(E_{\nu} \to E_{reco}) dE_{\nu}$$

- All of these terms depend on $E_{\nu}\xspace$, so this product cannot be factorized
- Even if the ND and FD were literally identical, the flux differences mean that nothing actually cancels
- Independent knowledge of flux and cross sections is very helpful

But there is no magical "cancellation"

no

$$N_{\nu_{\beta}}^{far}(E_{reco}) = \int \Phi_{\nu_{\beta}}(E_{\nu}, L) \times \sigma_{\nu_{\beta}}(E_{\nu}) \times \epsilon_{\nu_{\beta}}^{far}(E_{\nu}) \times \mathbf{D}_{\nu_{\beta}}^{far}(E_{\nu} \to E_{reco}) dE_{\nu}$$
$$N_{\nu_{\alpha}}^{near}(E_{reco}) = \int \Phi_{\nu_{\alpha}}(E_{\nu}, 0) \times \sigma_{\nu_{\alpha}}(E_{\nu}) \times \epsilon_{\nu_{\alpha}}^{near}(E_{\nu}) \times \mathbf{D}_{\nu_{\alpha}}^{near}(E_{\nu} \to E_{reco}) dE_{\nu}$$

- All of these terms depend on E_{ν} , so this product cannot be factorized
- Even if the ND and FD were literally identical, the flux differences mean that nothing actually cancels
- Independent knowledge of flux and cross sections is very helpful

One beam spill at 1MW in LAr ND...

101 Chris Marshall (LBNL)

LAWRENCE BERKE

...without timing resolution

102 Chris Marshall (LBNL)

LAWRENCE

DUNE near detector must constrain the initial neutrino flux

- Neutrino flux is known at the 10% level due to uncertainties in meson production in proton-carbon interactions, and modeling of the beam focusing
- This is not good enough need few % constraint from ND

ArgonCube concept

- Full three-dimensional readout with pads
 - Pad coordinates give two dimensions + third from drift time
 - Removes reconstruction ambiguities present in projective readout
 - Greatly reduces event overlap
- Modular, optically segmented
 - Each 1x1m module has its own photon detector, covering the walls orthogonal to pixel planes
 - Few ns timing resolution
 - Can separate optical signals from different neutrino interactions

PixLAr tests at Fermilab

- Pixel plane in LArIAT experiment at Fermilab in hadron test beam
- Demonstrates pixel concept for liquid TPC
- But electronics do not support singlechannel readout → analog multiplexing

LArPix: dedicated pixel electronics for LAr TPCs

See parallel talk Friday afternoon by Dan Dwyer

• Low-power, single-channel readout developed at LBNL, tested at LBNL and Bern

ArgonCube 2x2

- 2x2 module prototype, each 70x70x140cm³
- Plan to run with cosmic rays in 2019 at Bern
- Move to Fermilab and run in NuMI in 2020 as part of protoDUNE-ND

High-pressure gas TPC

- 10bar 90-10 Ar-CH₄ mixture
- Repurpose ALICE readout chambers (available in 2019), filling central hole with new chamber
- New front-end electronics

New software: GArSoft

Expected performance of gas TPC based on ALICE & PEP-4 experience

- ~250µm transverse position resolution
- 2-4 mrad angular resolution
- ~0.7% δp/p above 1 GeV/c, and ~1-2% down to 0.1 GeV/c
- Energy scale uncertainty at or below 1%
- ~5 MeV threshold for charged particle detection
- ~1t fiducial volume = ~1M neutrino interactions per year

Gas TPC test stand @Fermilab

110 Chris Marshall (LBNL)

BERK

.AB

LAWRENCE BERKELEY NATIONAL LABORATORY

High-performance ECal

- Gas TPC provides exquisite resolution for charged tracks, including electrons
 - But photons will rarely convert in gas volume
- π⁰ reconstruction requires high-performance ECal, with excellent energy and angular resolution for photon conversions

DUNE ND ECal concept

- Based on CALICE AHCAL concept
- Layers of scintillator tiles read out by SiPM
- Optimizations being performed at MPI-Munich, Mainz, DESY

3D scintillator tracker (3DST)

- 1 cm³ scintillator cubes in a large array, read out with orthogonal optical fibers in three dimensions
- Same concept being pursued by T2K ND280 upgrade, called "Super-FGD"
- Excellent 4π acceptance –no hole at 90°
- Very fast timing: capable of tagging neutrons from recoils, and measuring energy from time-of-flight
- Could be placed in front of (or inside?) gas TPC, or operated in its own magnet with muon spectrometer

ArgonCube module

2x2 Demonstrator module. Note, ND modules will not have individual pumps & filters

LAWRENCE BERKELEY NATIONAL LABORATOR

114 Chris Marshall (LBNL)

.....

There are actually three neutrinos (3 θ s, 2 independent Δm^2 s)

Is θ_{23} "maximal?"

- v_3 has (almost) the same amount of v_{μ} and v_{τ} , i.e. $\sin^2 2\theta_{23} \approx 1$
- Is it exactly 1? Could this be a hint of a flavor symmetry?
- If not, which way does it break? Is sin²θ₂₃ greater or less than 0.5?

inverted hierarchy (IH)

Neutrino oscillation "biprobability"

- Experiment essentially measures a point in this space
- Shown here for L = 810 km
- Increased L moves the red and blue ellipses further apart – by 1200km they do not overlap, meaning that the mass ordering and δ can be measured simultaneously

.....

Making neutrinos

 Beam is pointed downward 6° so that the neutrinos go to South Dakota

Pions produced in the atmosphere decay into neutrinos

 Cosmic ray interactions in the atmosphere produce pions

Upward-going $v_{\mu}s$ traverse the earth, and "disappear"

Super-Kamiokande, U Tokyo

of Events 300 250 expected number without oscillations expected number with oscillations observed number of muon neutrinos Number 200 150 100 ս 50 -0.5 0.5 0 $\cos \Theta$ Upward-going Downward-going (long distance) (short distance)

First evidence of neutrino oscillation, reported 5 June, 1998

- The upward-going v_{μ} "disappear"
- Downward-going v_{μ} do not the oscillation depends on the distance traveled by the neutrino
- T. Kajita reported the result on behalf of the Super-Kamiokande collaboration at the NEUTRINO98 conference in Takayama, Japan

SNO measured solar neutrinos three different ways

- The sun produces v_es, about
 100 billion per cm²/s on earth
- Sudbury Neutrino Observatory (SNO) is sensitive to three different types of interaction:
 - $v_e n \rightarrow e^- p (v_e \text{ only})$
 - $v_{\alpha}d \rightarrow v_{\alpha}np$ (all flavors equal)
 - $v_{\alpha}e \rightarrow v_{\alpha}e$ (all flavors, but higher rate for v_{e})

SNO showed that ~2/3 of the solar v_e are detected as v_μ and v_τ

The discovery of neutrino oscillations lead to the 2015 Nobel Prize

Direct flux constraint with v-electron elastic scattering

- Elastic scattering of a neutrino with an atomic electron: $v + e \rightarrow v + e$
- Unlike neutrino-nucleus scattering, this is a pure electroweak process, and the cross section can be calculated:

$$\frac{d\sigma(v_{\mu}e^{-} \rightarrow v_{\mu}e^{-})}{dy} = \frac{G_{F}^{2}m_{e}E_{v}}{2\pi} \left[\left(\frac{1}{2} - \sin^{2}\theta_{W}\right)^{2} + \sin^{4}\theta_{W}(1-y)^{2} \right]$$

• It can be measured in a detector and used to infer the (uncertain) neutrino flux

Direct flux constraint at <2% level: v-electron elastic scattering

- Detailed study to show how LAr
 TPC can measure this signal
- Reduce flux uncertainty from 8% → 2%

Measure initial v flux

min

Direct flux constraint at <2% level: v-electron elastic scattering

PHYSICAL REVIEW D 101, 032002 (2020)

Neutrino-electron elastic scattering for flux determination at the DUNE oscillation experiment

Chris M. Marshall⁰,¹ Kevin S. McFarland⁰,² and Callum Wilkinson³

¹Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ²University of Rochester, Rochester, New York 14627, USA ³University of Bern, Bern 3012, Switzerland

(Received 25 October 2019; accepted 9 January 2020; published 5 February 2020)

today!

We study the feasibility of using neutrino-electron elastic scattering to measure the neutrino flux in the DUNE neutrino oscillation experiment. The neutrino-electron scattering cross section is precisely known, and the kinematics of the reaction allow the determination of the incoming neutrino energy by precise measurement of the energy and angle of the recoiling electron. For several possible near detectors, we perform an analysis of their ability to measure neutrino flux in the presence of backgrounds and uncertainties. With realistic assumptions about detector masses, we find that a liquid argon detector, even with limitations due to angular resolution, is able to perform better than less dense detectors with more precise event-by-event neutrino energy measurements. We find that the absolute flux normalization uncertainty can be reduced from $\sim 8\%$ to $\sim 2\%$, and the uncertainty on the flux shape can be reduced by $\sim 20\%$ -30%.

mm