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Big picture question:
What happened to the antimatter?

Matter
=

Antimatter

All
things

made of
matter



Chris Marshall (LBNL)3

CP symmetry must be violated for 
matter-antimatter asymmetry

● Charge-parity “CP” symmetry = 
physics invariant for 
particle↔antiparticle + mirror 
image transformation

e-

e+
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Where is the CP violation to explain 
the imbalanced universe?

● CP violation has been observed in the quark sector, but 
it is far too small to explain the asymmetry

● If neutrinos violate CP, they 
could be responsible for the 
asymmetry

● If neutrinos do not violate CP, it 
is a strong indication of some 
new physics where the CP 
violation is hiding

ν
ν
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Outline

● Neutrinos & neutrino oscillations
● What we know and how we know it
● The missing pieces, including CP violation
● How we measure neutrino oscillations and why it's hard

● The Deep Underground Neutrino Experiment (DUNE)
● Precision neutrino oscillation physics
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Neutrinos are neutral, weakly-
interacting leptons

● Neutrinos have no electric 
charge
● No strong or 

electromagnetic forces – 
only weak interactions

● Very difficult to study 
neutrinos – they do not 
interact with detectors

● Neutrinos have (almost) 
no mass
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Neutrinos interactions are weak
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Neutrinos interactions are weak

1 LY
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Neutrinos come in three flavors, 
corresponding to charged leptons

ν
e

e

ν
μ

 μ 

ν
τ

τ
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Neutrino “oscillation”

ν
e

e

ν
μ

π+ μ+ 
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Many experiments over the past 20 
years have measured ν oscillations
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Neutrinos are born (and die) in 
states of definite flavor

Flavor eigenstates

ν
e

e-

ν
μ

π+  μ+ 



Chris Marshall (LBNL)13

Neutrinos live in states of definite 
mass

Flavor eigenstates Mass eigenstates

ν
3
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Neutrino oscillation requires mixing 
and mass differences

Flavor eigenstates Mass eigenstates

● Observation of neutrino oscillations implies that
● UPMNS is not diagonal

● The masses of ν1, ν2, ν3 are not equal
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Quarks mix, but neutrinos mix more

● Mixing is not unique to neutrinos – quarks mix too!
● We have measured these matrices, and we find that 

neutrinos mix a lot more than quarks

“CKM”matrix (quarks) “PMNS”matrix (neutrinos)
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Measuring neutrino oscillations:
probability vs. L/E

Distance / Energy (L/E)

 ~ 1/Δm2

Monoenergetic 
neutrinos Detectors
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Measuring neutrino oscillations:
probability vs. L/E

Distance / Energy (L/E)

 ~ 1/Δm2

Broadband 
neutrino beam Detectors
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Mixing matrix can be written in 
terms of these “angles”

Distance / Energy (L/E)

 ~ 1/Δm2

flavor states mass states
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The PMNS matrix can be 
parameterized in terms of angles

Flavor eigenstates Mass eigenstates

“solar”“atmospheric” cij = cosθij
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What we know

“solar”“atmospheric” cij = cosθij

Parameter is measured by:
Solar/reactor
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What we know

“solar”“atmospheric” cij = cosθij

Parameter is measured by:
Solar/reactor
Atmospheric/accelerator
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What we know

“solar”“atmospheric” cij = cosθij

Parameter is measured by:
Solar/reactor
Atmospheric/accelerator
Reactor/accelerator
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Unknown: Do neutrinos violate CP 
symmetry? Is δ

CP
 = 0?

“solar”“atmospheric” cij = cosθij

● CP violation is a crucial ingredient in generating the 
matter-antimatter asymmetry observed in the universe

● If neutrinos violate CP, they could be responsible for 
the matter-antimatter asymmetry

● If not, that means there is probably some new physics 
responsible for the matter-antimatter asymmetry
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Unknown: What is the mass 
ordering? Is ν

3
 heaviest or lightest?

● We know there is 
one very small 
mass difference 
and one 
(relatively) large 
one

● We don't know whether ν3 is the lightest (normal 
ordering) or the heaviest (inverted ordering)

● Data in the last two years show a weak 
preference for the normal ordering

quarks
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P(ν
μ
→ν

e
) is sensitive to CP violation

● The oscillation probability for νμ→νe depends on δCP 

Mass difference

what we want

what we can 
measure
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...And a lot of other stuff

● The oscillation probability for νμ→νe depends on δCP – 
and all the other parameters!

● Measuring δCP requires precise knowledge of 
everything else

Matter density

Mass difference
H. Nunokawa, S. J. Parke, and J. W. Valle, 
Prog.Part.Nucl.Phys., vol. 60 (2008)



Chris Marshall (LBNL)27

Mass ordering = sign of Δ31

● Mass ordering and CP-violating phase are degenerate 
for baseline up to ~1200 km → want very long baseline

● Matter matters: νe feel an additional potential due to 
electrons in the earth

Matter density

Mass difference
H. Nunokawa, S. J. Parke, and J. W. Valle, 
Prog.Part.Nucl.Phys., vol. 60 (2008)
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Matter and δ flip sign for ν
μ

● Matter terms and CP-violating term flip sign for 
antineutrino oscillations

● Incredibly valuable to be able to measure both 
P(νμ→νe) and P(νμ→νe)

Matter density

Mass difference
H. Nunokawa, S. J. Parke, and J. W. Valle, 
Prog.Part.Nucl.Phys., vol. 60 (2008)
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Non-zero δCP changes oscillation 
probabilities for ν and ν 

Neutrino Antineutrino
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Experimental requirements to 
measure δ

CP

Intense, broadband
neutrino beam

Switchable between 
ν

μ
 and ν

μ

Huge detector
at L > 1200km

Precise measurement
of neutrino energy

Separate μ from e
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● Intense neutrino source from upgraded Fermilab accelerator, 
switchable between neutrino and antineutrino beams

● 70,000 ton far detector in Lead, South Dakota, 1300 km from source
● Highly capable near detector facility at Fermilab, 500 m from source
● Currently digging holes, fully operational in 2026
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The DUNE international collaboration

● 1132 collaborators 
from 188 institutions 
in 31 countries 
(+CERN)
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Making neutrinos starts with an
upgraded accelerator

● Upgraded Fermilab accelerator to produce proton beam with 
intensity up to 2.4 MW

● New magnets being designed and built in India at BARC, 
IUAC, RRCAT, and VECC
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Making neutrinos

120 GeV 
proton 

beamline
Toward
detectors
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Making neutrinos

Protons interact in a 
graphite target

Toward
detectors
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Making neutrinos

Proton-carbon interactions 
produce charged pions & kaons

Toward
detectors
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Making neutrinos

Magnetic horns focus one sign into a 
decay pipe, and defocus the other

π+

π-

Toward
detectors
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Making neutrinos

Pions decay into neutrinos 

μ+

π-

π+

ν
μ

Toward
detectors

Intense, broadband
neutrino beam



Chris Marshall (LBNL)39

Making antineutrinos

Pions decay into antineutrinos 

μ-

π+
ν

μ

π-

Toward
detectors

Switchable between 
ν

μ
 and ν

μ
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Underground far detectors: 
70,000 tons at L = 1300 km

150 m

Huge detector
at L > 1200km
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The Far Detector: 70 kiloton
Liquid Ar Time Projection Chamber
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LAr TPC technology

MicroBooNE JINST 12.10 (2017)
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LAr TPC can identify μ & e, measure 
energy of ν interaction products

Separate μ from e

Precise measurement
of neutrino energy
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DUNE can measure ν
μ
→ν

e
 with

~3% statistical uncertainty 
● δCP sensitivity is due to νe/νe samples

● νμ “disappearance” sample for precision measurements 
of other oscillation parameters

sin22θ23

Δm2
32

δCP

sin22θ13
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Systematics must be constrained at 
the level of ~3%

● Oscillations occur as a function of true neutrino energy
● But detector measures event rate = flux x cross section, 

as a function of visible energy
● Uncertainties in neutrino-argon 

cross sections, and the 
relationship between neutrino 
energy and visible energy are 
crucial

● Measure it with the near 
detector 



Chris Marshall (LBNL)46

DUNE requires a highly capable 
near detector system

Intense, broadband
neutrino beam

Switchable between 
ν

μ
 and ν

μ

Huge detector
at L > 1200km

Precise measurement
of neutrino energy

Separate μ from e

Measure initial ν flux Measure ν interactions E
ν
 ↔E

reco
 

Monitor the neutrino
beam
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Near Detector discussion meeting 
this week

● Three-day meeting to discuss DUNE near detector will 
conclude tomorrow

● Interesting discussions on many aspects of the ND 
program, with particular focus on collaboration with 
TIFR and Indian institutions
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The DUNE Near Detector:
precision systematic constraints

● LAr TPC functionally similar to far detector
● Magnetized, high-pressure gaseous Ar TPC with high-

performance calorimeter
● Magnetized plastic scintillator tracker & on-axis beam monitor

ν 

R. Flight, Rochester
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ArgonCube: pixelated LAr TPC to 
measure ν-Ar interactions

● >50M neutrino 
interactions per 
year – will be 
the largest 
sample ever 
collected

● Study cross 
sections in 
very similar 
detector to FD

Measure ν cross sections
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High-pressure gaseous argon TPC:
ν-Ar interactions in exquisite detail

PEP-4, 80/20 Ar-CH4 at 8.5 atm

Measure ν cross sections
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Pressure vessel for HPgTPC design 
from BARC

● Vessel must be very large to accommodate 5m TPC 
radius, and very thin so that photons do not shower

● Leads to complicated engineering requirements, 
currently under design at BARC
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Magnet system for gaseous TPC

● Reference is 5-coil 
superconducting 
Helmholtz design, 
but optimization is 
still ongoing

● Potential for 
collaboration 
between India, 
Italy, and United 
States
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ND in the underground facility

Neutrino beam
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The near detector will move up to 
33m off-axis

Neutrino beam



Chris Marshall (LBNL)55

Directly probing Eν-dependence 
with a movable ND

● Due to the pion decay kinematics, the neutrino flux is 
peaked at lower energies if you look off-axis

● The ND will slide 33m off-axis to access many different 
flux spectra, directly measuring effects that depend on Eν 

E
ν
 ↔E

reco
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Estimated sensitivity to δ
CP

● DUNE's resolution is 13-25 
degrees after 7 years, 
depending on the true value

● After 15 years, the 
resolution is ~8 degrees at 
CP-conserving values, and 
~16 degrees at maximally-
violating values
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CP violation and mass ordering

● >5σ discovery potential for δCP ≠ 0 for >50% of true values

● Definitive mass ordering determination regardless of true values of parameters
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Lots of physics, too little time

● DUNE is sensitive to nucleon decay, and competitive 
with existing limits in many channels

● Supernova neutrinos, if we get lucky
● Numerous other physics searches beyond the Standard 

Model, including:
● Sterile neutrinos
● Light dark matter
● Neutrino tridents
● Non-standard interactions
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Conclusions

● DUNE brings neutrino physics to the precision era:
● Measurement of δCP, and discovery of CP violation in 

neutrino sector if it is sufficiently large
● Determination of the neutrino mass ordering
● Precise measurements of oscillation parameters

● Measurement is very challenging: requires intense 
beam; huge, highly-capable far detector; precision near 
detector

● DUNE is designed to overcome these challenges



Chris Marshall (LBNL)60

Thank you!
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Backups
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Computing: a worldwide effort
● DUNE computing is 

distributed all over the 
world

● About 50% of DUNE's 
overall computing is 
done in the United States

● Discussions are 
underway about using 
the computing cluster at 
TIFR for DUNE
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Nucleon decay & nn oscillations

Wire number Wire number

TimeTime

Collection plane Collection plane

● Updated analyses with full simulation & reconstruction 
will be presented in upcoming TDR

p→K+ν nn → pions

K+ 
μ+ 

e+ 
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Supernova burst neutrinos

time

wire number

charge

● DUNE will see 100s to 1000s 
of neutrinos from a supernova 
burst

● Primary channel in LAr is    
νe 

40Ar→e- 40K*
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BSM searches
● Sterile neutrinos
● Light dark matter
● Boosted dark matter
● Non-standard interactions
● Neutrino tridents
● Large extra dimensions
● Likely much more!
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Sakharov conditions for dynamical 
baryon asymmetry

● Baryon number violation
● C- and CP-symmetry violation

● C-symmetry would balance the interactions that produce 
more baryons with interactions that produce more 
antibaryons

● CP-symmetry would ensure equal numbers of left-handed 
baryons and right-handed antibaryons, and vice versa

● Interactions out of thermal equilibrium
● Otherwise CPT symmetry would balance processes 

increasing and decreasing the baryon asymmetry
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ProtoDUNE: prototyping the DUNE 
far detector design

● Two prototype 
detectors located at 
CERN neutrino 
platform

● Single phase and 
dual phase

● Test detector 
engineering, and 
also hadron beam 
physics program
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ProtoDUNE-SP
● Full scale 

prototype – 
same voltage, 
drift distance as 
DUNE SP

● Test of design, 
installation, 
operation, 
stability

● Measure hadron 
response in LAr
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ProtoDUNE-SP
● Beam physics run 

Sep 21 – Nov 11
● Pions, protons, 

electrons, kaons 
from 0.3-7 GeV, 
total ~4M triggers

● Achieved stable 
running at 180kV, 
~8ms electron 
lifetime, ~600 ENC 
noise → S/N ~ 38
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ProtoDUNE-SP event display
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ProtoDUNE-DP
● Complete dual-phase detector assembled in cryostat 

since March 2019

● Purging, 
cooling, 
filling this 
summer

● End of 
filling will 
be ~August
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Two detector technologies

● Single phase: all liquid, charge read out by two induction wire planes and 
one collection plane

● Dual phase: Charge drifts vertically, amplified and read out in gas phase 
for larger signal/noise

Single phase Dual phase
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Profile of 17 kiloton module

● Words words words

● 2 cathode planes 
→ 4 drift regions 
each ~3.6m

● 500 V/cm field = 
180 kV potential
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CP sensitivity

● blah blah blah
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MH sensitivity

● blah blah blah
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DUNE will reach reactor precision 
of θ

13
 with full data set

● blah blah blah
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Mass ordering in ~2 years

● DUNE will make world-leading measurements 
throughout its program
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FD oscillated flux matching with off-
axis ND spectra
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Reproduce FD flux with linear 
combinations of ND samples

● By taking linear combinations of spectra at different off-axis 
angles, we can create pseudo-monoenergetic beams

● Or we can create a replica oscillated FD flux for some set of 
oscillation parameters



Chris Marshall (LBNL)80

Measuring neutrino energy

● LAr TPC can “see” ionization energy deposited by 
charged particles, and measure this energy

● Eν = Eμ + Eπ± + Eπ0 + Ep + En + ...

DUNE simulation
3.1 GeV νμ CC



Chris Marshall (LBNL)81

● Leptons, pions, and protons are all seen by DUNE, and can be 
reconstructed, albeit with somewhat different response 
functions

● Eν = Eμ + Eπ± + Eπ0 + Ep + En + ...

DUNE simulation
3.1 GeV νμ CC

Measuring neutrino energy

Precise measurement
of neutrino energy



Chris Marshall (LBNL)82

● Neutrons show up as small blips in the detector, and 
their energy is mostly lost, i.e. “missing energy”

● Eν = Eμ + Eπ± + Eπ0 + Ep + En + ...

DUNE simulation
3.1 GeV νμ CC

Measuring neutrino energy
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● If you change the composition of the final state, i.e. if there 
are more neutrons and fewer protons, then the reconstructed 
energy will be impacted

● Eν = Eμ + Eπ± + Eπ0 + Ep + En + ...

DUNE simulation
3.1 GeV νμ CC

Measuring neutrino energy
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ν
μ
s  disappear in the USA, too

● Muon neutrino beam produced at Fermilab and 
measured in northern Minnesota

● A deficit is observed due to νμ→ντ oscillations

W.C. Louis Physics 4, 54

G. Tzanakos et al. MINOS+ proposal
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ν
e
 disappearance at Daya Bay

● Nuclear reactors provide excellent source of “free” 
electron antineutrinos from beta decays

● Daya Bay measures 
neutrinos from six reactor 
cores, with four detectors 
at a distance of 2 km

● Four near detectors 
measure the initial 
neutrino spectrum very 
near the cores
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Far detectors see fewer ν
e
s

● Daya Bay is only 
sensitive to electron 
neutrinos

● Observe fewer at the far 
detectors than is expected 
based on near detector 
rate

● νes oscillate to other 
flavors
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Event mixture in DUNE oscillation 
sample is very different from T2K

● GENIE “DefaultPlusValenciaMEC” on Ar
● DUNE oscillation peak region is roughly 40% 0π, 40% 1π, 20% 2+π

● Compared to T2K ~85% 0π 

● Huge amount of theory work has dramatically improved our modeling 
of CC0π – we need this same commitment to 1π, 2π, SIS/DIS, etc. for 
DUNE   

0.4 < Eν < 0.8 GeV 2.3 < Eν < 2.7 GeV 4.0 < Eν < 4.5 GeV
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Flux uncertainty principal 
component analysis

● The largest HP & 
focusing uncertainties 
show up as principal 
components of the full 
flux covariance

● The largest 30 
components are 
treated as nuisance 
parameters in DUNE 
TDR sensitivity 
analysis
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Eν resolution vs. (Ee, θe) 
● Energy resolution is 

quite good in a region 
of (E,θ), basically 
where Eθ2 is very 
small

● Effectively, select a 
subsample of good, 
and unbiased energy 
resolution and 
measure shape from it

● Requires very high 
statistics

5% energy resolution
LAr-like angular resolution

Color axis is RMS of
(reco – true)/true Eν in a given bin 
of reco Ee and θe (with smearing)

Reconstructed

R
ec

on
st

ru
ct

ed

(reco – true)/true Eν (reco – true)/true Eν
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ν+e scattering signal and 
backgrounds in E,θ 

● Signal is subject to kinematic constraint Eeθe
2 < 2me

● Dominant background is νe CC at very low Q2

● But background shape in E, θ is very different from signal, and 
realistic uncertainties on background shape still do not produce 
signal-like distribution

Signal ν+e νe CC NC π0
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2D templates for ν+e signal

● Each template is a bin of neutrino energy, and adds events in (E,θ) 
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DUNE ND ν+e statistics

● DUNE LAr ND at 
~50t F.V. will have 
~15k events in 3 
years, even with 
very conservative 
thresholds

● >100x more 
statistics than 
MINERvA LE 
analysis

1 year LAr

3 years

DUNE ND 574m 3-horn flux
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Far detector event selection: 
FHC νe CVN probability

Osc. CC electron

CC muon
CC tau

NC

Beam CC electron

● FHC event 
probabilities 
from CVN

● Cut at 0.85 for 
this analysis

● Selects 
oscillated and 
intrinsic 
electrons
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Neutrino oscillation probability

● The goal of any neutrino oscillation experiment:
● Measure the flux of neutrinos of flavor β at a distance L
● Compare it to the flux of neutrinos of flavor α at the source
● As a function of neutrino energy
● Disappearance (α = β) and appearance (α ≠ β)

Neutrino source Far detector

να
νβ 

distance L
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We measure neutrino interactions, 
not fluxes directly

● Observed interaction rate, N, depends on fluxes, but 
also cross sections (σ), and detector acceptance (ε)

● Cross sections, in particular, are highly uncertain

Neutrino source Far detector

να
νβ 

distance L
β 
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Energy reconstruction is 
challenging

● And the observed rate is measured as a function of 
reconstructed energy, which is connected to neutrino 
energy Eν by some smearing matrix D

● This matrix dependent on your particular detector, but 
also depends strongly on neutrino interactions

Neutrino source Far detector

να
νβ 

distance L
β 
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Uncertainties are reduced with near 
detector measurements

● Near detector in the same flux, with the same nuclear 
target, and a similar detector technology, will constrain 
many uncertain parameters
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But there is no magical 
“cancellation”

● There are many differences between the observed interaction rates at 
the near and far detectors, which lead to systematic uncertainties:
● Fluxes are different primarily due to oscillations
● Cross sections are strongly energy-dependent, potentially different nucleus, 

or different neutrino flavor
● Even if ND and FD are “functionally identical,” acceptance and energy 

reconstruction will be somewhat different due to the sizes



Chris Marshall (LBNL)99

But there is no magical 
“cancellation”

● All of these terms depend on Eν, so this product cannot be 
factorized

● Even if the ND and FD were literally identical, the flux 
differences mean that nothing actually cancels

● Independent knowledge of flux and cross sections is very 
helpful

?
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But there is no magical 
“cancellation”

● All of these terms depend on Eν, so this product cannot be 
factorized

● Even if the ND and FD were literally identical, the flux 
differences mean that nothing actually cancels

● Independent knowledge of flux and cross sections is very 
helpful

no
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One beam spill at 1MW in LAr ND...
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...without timing resolution



Chris Marshall (LBNL)103

DUNE near detector must constrain 
the initial neutrino flux

● Neutrino flux is known at the 10% level due to uncertainties 
in meson production in proton-carbon interactions, and 
modeling of the beam focusing

● This is not good enough – need few % constraint from ND

Measure initial ν flux
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ArgonCube concept

● Modular, optically segmented
● Each 1x1m module has its own 

photon detector, covering the walls 
orthogonal to pixel planes

● Few ns timing resolution
● Can separate optical signals from 

different neutrino interactions

● Full three-dimensional readout with pads
● Pad coordinates give two dimensions + third from drift time
● Removes reconstruction ambiguities present in projective 

readout
● Greatly reduces event overlap
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PixLAr tests at Fermilab

● Pixel plane in 
LArIAT experiment 
at Fermilab in 
hadron test beam

● Demonstrates pixel 
concept for liquid 
TPC

● But electronics do 
not support single-
channel readout → 
analog multiplexing
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LArPix: dedicated pixel 
electronics for LAr TPCs

● Low-power, single-channel readout developed at LBNL, 
tested at LBNL and Bern

See parallel talk Friday afternoon by Dan Dwyer
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ArgonCube 2x2
● 2x2 module prototype, each 

70x70x140cm3

● Plan to run with cosmic rays 
in 2019 at Bern

● Move to Fermilab and run in 
NuMI in 2020 as part of 
protoDUNE-ND
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High-pressure gas TPC
● 10bar 90-10 Ar-CH4 mixture

● Repurpose ALICE readout chambers (available in 2019), filling central 
hole with new chamber

● New front-end electronics New software: GArSoft
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Expected performance of gas TPC 
based on ALICE & PEP-4 experience
● ~250μm transverse position resolution

● 2-4 mrad angular resolution

PEP-4, 80/20 Ar-CH4 at 8.5 atm
● ~0.7% δp/p above 1 GeV/c, 

and ~1-2% down to 0.1 
GeV/c

● Energy scale uncertainty at 
or below 1%

● ~5 MeV threshold for 
charged particle detection

● ~1t fiducial volume = ~1M 
neutrino interactions per year



Chris Marshall (LBNL)110

Gas TPC test stand @Fermilab
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High-performance ECal

● Gas TPC provides exquisite resolution for charged tracks, 
including electrons
● But photons will rarely convert in gas volume

● π0 reconstruction requires high-performance ECal, with 
excellent energy and angular resolution for photon conversions
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DUNE ND ECal concept

SiPM

Absorber

Readout 
board

● Based on CALICE AHCAL concept
● Layers of scintillator tiles read out by SiPM
● Optimizations being performed at MPI-Munich, Mainz, 

DESY
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3D scintillator tracker (3DST)
● 1 cm3 scintillator cubes in a large array, read out with 

orthogonal optical fibers in three dimensions
● Same concept being pursued by T2K ND280 upgrade, called 

“Super-FGD”
● Excellent 4π acceptance –no hole at 90°

● Very fast timing: capable of tagging 
neutrons from recoils, and measuring 
energy from time-of-flight

● Could be placed in front of (or inside?) gas 
TPC, or operated in its own magnet with 
muon spectrometer
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ArgonCube module



Chris Marshall (LBNL)115

There are actually three neutrinos
(3 θs, 2 independent Δm2s)

Δm2

32

sin22θ
23

Δm2

21

sin22θ
12

sin22θ
13
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Is θ
23

 “maximal?”

“solar”“atmospheric” cij = cosθij

● ν3 has (almost) the same 
amount of νμ and ντ, i.e. 
sin22θ23 ≈ 1

● Is it exactly 1? Could this 
be a hint of a flavor 
symmetry?

● If not, which way does it 
break? Is sin2θ23 greater or 
less than 0.5?



Chris Marshall (LBNL)117

Neutrino oscillation “biprobability”

● Experiment essentially 
measures a point in this 
space

● Shown here for L = 810 km
● Increased L moves the red 

and blue ellipses further 
apart – by 1200km they do 
not overlap, meaning that 
the mass ordering and δ can 
be measured simultaneously

Increase L

Increase L
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Making neutrinos

● Beam is pointed downward 6° so that the neutrinos go 
to South Dakota
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Pions produced in the atmosphere 
decay into neutrinos

● Cosmic ray interactions 
in the atmosphere 
produce pions 

π → μ ν
μ
 

→ e ν
e
 ν

μ
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Upward-going νμs  traverse the 
earth, and “disappear”

ν
μ

Super-Kamiokande, U Tokyo

Upward-going
(long distance)

Downward-going
(short distance)

cos Θ
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First evidence of neutrino 
oscillation, reported 5 June, 1998

● The upward-going νμ 
“disappear”

● Downward-going νμ do not – 
the oscillation depends on the 
distance traveled by the neutrino

● T. Kajita reported the result on 
behalf of the Super-
Kamiokande collaboration at 
the NEUTRINO98 conference 
in Takayama, Japan
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SNO measured solar neutrinos 
three different ways

● The sun produces νes, about 
100 billion per cm2/s on earth

● Sudbury Neutrino Observatory 
(SNO) is sensitive to three 
different types of interaction:
● νen → e-p (νe only)

● ναd →ναnp (all flavors equal)

● ναe→ναe (all flavors, but higher 
rate for νe)
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SNO showed that ~2/3 of the solar 
νe are detected as νμ  and ντ 

ν
e
 flux

ν μ
+
ν τ 

 fl
u

x
Nuc. Phys. B 908 30-51 (2016)
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The discovery of neutrino 
oscillations lead to the

2015 Nobel Prize
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Direct flux constraint with 
ν-electron elastic scattering

● Elastic scattering of a neutrino with an atomic electron: 
                              ν + e → ν + e

● Unlike neutrino-nucleus scattering, this is a pure 
electroweak process, and the cross section can be 
calculated:

● It can be measured in a detector and used to infer the 
(uncertain) neutrino flux
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Direct flux constraint at <2% level: 
ν-electron elastic scattering

● Detailed study to 
show how LAr 
TPC can measure 
this signal

● Reduce flux 
uncertainty from 
8% →2%

Measure initial ν flux
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Direct flux constraint at <2% level: 
ν-electron elastic scattering

● Detailed study to 
show how LAr 
TPC can measure 
this signal

● Reduce flux 
uncertainty from 
8% →2%

Measure initial ν flux

today!
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