Anomaly Cancellation With an

Extra Gauge Boson

by
Ben Allanach
(University of Cambridge)

- Anomaly cancellation in the SM
- Lie algebra $s u(3) \oplus s u(2) \oplus u(1) \oplus u(1)$
- General solution (BCA, Gripaios, Tooby-Smith, arXiv:2006.03588)

Cambridge Pheno Working Group

Where data and theory collide

Gauge Rank++

Extend SM gauge Lie algebra to $s u(3) \oplus s u(2) \oplus u(1) \oplus$ $u(1)$

- Z^{\prime} phenomenology: coupling to ψ
- axions
- $(g-2)_{\mu}$
- anomalies in B-meson decays
- fermion mass hierarchies
- unification: our analysis will cover extensions for which this is the algebra of a subgroup eg non-abelian extensions

Local QFT Anomalies in the 4d SM

Also, replace two B fields by gravitons, gluons or $S U(2)$ W bosons. From now on, write all fields as left-handed.

$$
\begin{aligned}
Y^{3}: & 0=\sum_{j=1}^{3}\left(6 Y_{Q_{j}}^{3}+3 Y_{U_{j}}^{3}+3 Y_{D_{j}}^{3}+2 Y_{L_{j}}^{3}+Y_{E_{j}}^{3}\right), \\
3^{2} Y: & 0=\sum_{j=1}^{3}\left(2 Y_{Q_{j}}+Y_{U_{j}}+Y_{D_{j}}\right) \\
2^{2} Y: & 0=\sum_{j=1}^{3}\left(3 Y_{Q_{j}}+Y_{L_{j}}\right) \\
\operatorname{grav}^{2} Y: & 0=\sum_{j=1}^{3}\left(6 Y_{Q_{j}}+3 Y_{U_{j}}+3 Y_{D_{j}}+2 Y_{L_{j}}+Y_{E_{j}}\right)
\end{aligned}
$$

Three family Anomaly Cancellation Conditions

Family Universal SM anomaly cancellation

If the hypercharges are quantised, FU but otherwise free, the gauge ACC implies the gravitational ACC^{1}.

Deforming the FU SM to $S U(3) \times S U(2) \times \mathbb{R}_{Y}$, and allowing the hypercharges Y of the chiral fermionic fields to float, the combination of gauge ACC and gravitational ACC implies that the hypercharges must be commensurate ${ }^{2}$.
${ }^{1}$ Lohitsiri and Tong, arXiv:1907. 00514
${ }^{2}$ Weinberg, The Quantum Theory of Fields (1995), Cambridge University Press

Extra $u(1)$ plus SM-singlets

- RH neutrino $N:=$ SM singlet. Default number is 3
- Can explain neutrino oscillation data
- 0 RH neutrinos equivalent to $N_{i}=0$ subset
- Now, field labels denote the extra $u(1)$ charge
- ACCs become

$$
\begin{aligned}
3^{2} X: & 0=\sum_{j=1}^{3}\left(2 Q_{j}+U_{j}+D_{j}\right) \\
2^{2} X: & 0=\sum_{j=1}^{3}\left(3 Q_{j}+L_{j}\right) \\
Y^{2} X: & 0=\sum_{j=1}^{3}\left(Q_{j}+8 U_{j}+2 D_{j}+3 L_{j}+6 E_{j}\right), \\
\operatorname{grav}^{2} X: & 0=\sum_{j=1}^{3}\left(6 Q_{j}+3 U_{j}+3 D_{j}+2 L_{j}+E_{j}+N_{j}\right), \\
Y X^{2}: & 0=\sum_{j=1}^{3}\left(Q_{j}^{2}-2 U_{j}^{2}+D_{j}^{2}-L_{j}^{2}+E_{j}^{2}\right) \\
X^{3}: & 0=\sum_{j=1}^{3}\left(6 Q_{j}^{3}+3 U_{j}^{3}+3 D_{j}^{3}+2 L_{j}^{3}+E_{j}^{3}+N_{j}^{3}\right) .
\end{aligned}
$$

We had a partial solution to these in BCA, Gripaios, Tooby-Smith, arXiv:1912.10022: could tell you what the SM fermions' charges had to be, but not what N_{i} were, in general.

For $5 N$ fields, there were always some full solutions (but we didn't capture all of them). For less than 5 Ns , one has to do further work to tell whether there are solutions or not, and we didn't say what they are.

Diophantine Equations

- Since this is $u(1)$, charges are commensurate: looking for compact extensions like the SM
- Thus we are looking for solutions over \mathbb{Z}^{18}.
- Any overall real factor in charge can be absorbed in $u(1)$ gauge coupling: $\mathcal{L} \supset-g \sum_{\psi} X_{\psi} \bar{\psi} X \psi$
- General diophantine equations are difficult to solve analytically over the integers
- Number theory state-of-the art for general analytic solution of generic diophantine equations is roughly one cubic in three unknowns

Anomaly-free Atlas

To find solutions for fixed $n \leq 3$ and charges between -10 and 10 , we did a numerical scan $\left(21^{18} \sim 10^{24}\right)$: BCA, Davighi, Melville, arXiv:1812.04602.

An Anomaly-Free Atlas is available for public use: http://doi.org/10.5281/zenodo. 1478085

We begin with 18 charges and 6 anomaly equations reduce these to a 12-dimensional surface of solutions, extending out to infinity, but sparser away from $\mathbf{0}$.

$Q_{\max }$	Solutions	Symmetry	Quadratics	Cubics	Time/sec
1	$\mathbf{3 8}$	16	144	38	0.0
2	$\mathbf{3 5 8}$	48	31439	2829	0.0
3	$\mathbf{4 1 1 6}$	154	1571716	69421	0.1
4	$\mathbf{2 4 5 5 2}$	338	34761022	932736	0.6
5	$\mathbf{1 1 1 1 5 2}$	796	442549238	7993169	6.8
6	$\mathbf{4 3 5 3 0 5}$	1218	3813718154	49541883	56
7	$\mathbf{1 3 5 8 3 8 8}$	2332	24616693253	241368652	312
8	$\mathbf{3 6 1 2 7 3 4}$	3514	127878976089	978792750	1559
9	$\mathbf{9 5 8 7 0 8 5}$	5648	558403872034	3432486128	6584
10	$\mathbf{2 1 5 4 6 9 2 0}$	7540	2117256832910	10687426240	24748

Inequivalent solutions with $3 \mathrm{RH} \nu$

Q	Q	Q	ν	ν	ν	e	e	e	u	u	u	L	L	L	d	d	d
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	-1	0	1	-1	0	1
0	0	0	0	0	0	-1	0	1	0	0	0	-1	0	1	0	0	0
0	0	0	0	0	0	-1	0	1	-1	0	1	0	0	0	-1	0	1
-1	0	1	0	0	0	0	0	0	0	0	0	-1	0	1	0	0	0
-1	0	1	0	0	0	0	0	0	-1	0	1	0	0	0	-1	0	1
-1	0	1	0	0	0	-1	0	1	-1	0	1	0	0	0	0	0	0
-1	0	1	0	0	0	-1	0	1	-1	0	1	-1	0	1	-1	0	1

eg: $Q_{\max }=1, N_{i}=0$. Charges within a species are listed in increasing order.

Known Solutions

	Q_{1}	Q_{2}	Q_{3}	U_{1}	U_{2}	U_{3}	D_{1}	D_{2}	D_{3}	L_{1}	L_{2}	L_{3}	E_{1}	E_{2}	E_{3}	N_{1}	N_{2}	N_{3}
A	0	0	1	0	0	-4	0	0	-2	0	0	-3	0	0	6	0	0	0
B	1	1	1	-1	-1	-1	-1	-1	-1	-3	-3	-3	3	3	3	3	3	3
C	-1	0	1	-1	0	1	-1	0	1	-1	0	1	-1	0	1	0	0	0

- A is TFHM (BCA, Davighi, arXiv:1809.01158)
- B is $B-L$, vector-like
- C has inter-family cancellation

Analytic Solution

Want a full, general analytic solution for any $Q_{\text {max }}$.
First step is to convert it into a problem in geometry by noting that solutions over \mathbb{Q} are equivalent to those over \mathbb{Z} by clearing all denominators. Since \mathbb{Q} is a field, you can define geometry on it.

We start with \mathbb{Q}^{18} solution space.
All solutions where charges z_{i} differ by a common multiple are physically equivalent so we define an equivalence class to obtain $P \mathbb{Q}^{17}$.

Projective space $P \mathbb{Q}^{17}$

2d surface through origin becomes a line in projective space and a line through origin becomes a point

Preliminaries

4 linear equations restrict $P \mathbb{Q}^{17}$ to a projective subspace isomorphic to $P \mathbb{Q}^{13}$. Within this, we look for the intersection of a quadratic surface

$$
0=\sum_{j=1}^{3}\left(Q_{j}^{2}-2 U_{j}^{2}+D_{j}^{2}-L_{j}^{2}+E_{j}^{2}\right)
$$

and a cubic surface

$$
0=\sum_{j=1}^{3}\left(6 Q_{j}^{3}+3 U_{j}^{3}+3 D_{j}^{3}+2 L_{j}^{3}+E_{j}^{3}+N_{j}^{3}\right)
$$

The Method of Chords ${ }^{3}$

"A chord intersecting a rational cubic surface at two known rational points intersects it at 1 other \mathbb{Q} point" eg Rational cubic $c\left(z_{i}\right)=0$. Put a line through 2 known intersections $a, b: \quad L(t)=a+t(b-a)$. Along line, $c(L(t))=k t(t-1)\left(t-t_{0}\right)$, where $k, t_{0} \in \mathbb{Q}$.

Caveat: It is possible that the line lies entirely within the cubic surface, i.e. $c(L(t))=$ 0 irrespective of t.
${ }^{3}$ Newton, Fermat, C17 ${ }^{\text {th }}$

Double Points

Points which are solutions of multiplicity two. All partial derivatives of the surface vanish there, eg $(x, y)=(0,0)$ of the curve

$$
\left(x^{2}+y^{2}+a^{2}\right)^{2}-4 a^{2} x^{2}-a^{4}=0
$$

Point B is a double point of the quadratic and the cubic

Method

- Every solution to quadratic R lies on some line $S C$
- B is double point of quadratic $\Rightarrow R B$ in quadratic
- Scan S (parameters) to find all R, extend line to find all X.

The Nitty-Gritty

$$
\begin{align*}
& Q_{1}=\Gamma-\Sigma+\Lambda S_{Q_{1}}, \\
& Q_{2}=\Gamma+\Lambda S_{Q_{2}}, \\
& Q_{3}=\Gamma+\Sigma+\Lambda S_{Q_{3}}, \\
& U_{1}=-\Gamma-\Sigma+\Lambda S_{U_{1}}, \\
& U_{2}=-\Gamma+\Lambda S_{U_{2}}, \\
& U_{3}=-\Gamma+\Sigma+\Lambda S_{U_{3}}, \\
& D_{1}=-\Gamma-\Sigma+\Lambda S_{D_{1}}, \\
& D_{2}=-\Gamma+\Lambda S_{D_{2}}, \\
& D_{3}=-\Gamma+\Sigma+\Lambda S_{D_{3}}, \tag{3}\\
& L_{1}=-3 \Gamma-\Sigma+\Lambda S_{L_{1}}, \\
& L_{2}=-3 \Gamma+\Lambda S_{L_{2}}, \\
& L_{3}=-3 \Gamma+\Sigma+\Lambda S_{L_{3}}, \\
& E_{1}=3 \Gamma-\Sigma+\Lambda S_{E_{1}}, \\
& E_{2}=3 \Gamma+\Lambda S_{E_{2}}, \\
& E_{3}=3 \Gamma+\Sigma+\Lambda S_{E_{3}}, \\
& N_{1}=3 \Gamma+\Lambda S_{N_{1}}, \\
& N_{2}=3 \Gamma+\Lambda S_{N_{2}}, \\
& N_{3}=3 \Gamma+\Lambda S_{N_{3}},
\end{align*}
$$

$$
\begin{aligned}
& \Gamma=c(R, R, R)+r \delta_{c(B, R, R), 0} \delta_{c(R, R, R), 0}, \\
& \Sigma=\left(-3 c(B, R, R)+t \delta_{c(B, R, R), 0} \delta_{c(R, R, R), 0}\right) \\
& \left(q(S, S)+a \delta_{q(S, S), 0} \delta_{q(C, S), 0}\right), \\
& \Lambda=\left(-3 c(B, R, R)+t \delta_{c(B, R, R), 0} \delta_{c(R, R, R), 0}\right) \\
& \left(-2 q(C, S)+b \delta_{q(S, S), 0} \delta_{q(C, S), 0}\right) \text {. } \\
& q\left(P, P^{\prime}\right):=\sum_{i=1}\left(Q_{i} Q_{i}^{\prime}-2 U_{i} U_{i}{ }^{\prime}+D_{i} D_{i}{ }^{\prime}\right. \\
& \left.-L_{i} L_{i}{ }^{\prime}+E_{i} E_{i}{ }^{\prime}\right), \\
& c\left(P, P^{\prime}, P^{\prime \prime}\right):=\sum_{i=1}^{3}\left(6 Q_{i} Q_{i}{ }^{\prime} Q_{i}{ }^{\prime \prime}+3 U_{i} U_{i}{ }^{\prime} U_{i}^{\prime \prime}+3 D_{i} D_{i}{ }^{\prime} D_{i}{ }^{\prime \prime}\right. \\
& \left.+2 L_{i} L_{i}{ }^{\prime} L_{i}{ }^{\prime \prime}+E_{i} E_{i}{ }^{\prime} E_{i}{ }^{\prime \prime}+N_{i} N_{i}{ }^{\prime}{ }^{\prime}{ }_{i}{ }^{\prime \prime}\right) \text {. } \\
& R=q(S, S) C-2 q(C, S) S+\delta_{q(S, S), 0} \delta_{q(C, S), 0}(a C+b S), \\
& S_{Q_{3}}=\frac{1}{2}\left[-2 S_{Q_{1}}-2 S_{Q_{2}}+\sum_{i=1}^{3}\left(S_{D_{i}}+S_{N_{i}}\right)\right], \\
& S_{U_{3}}=-\left[S_{U_{1}}+S_{U_{2}}+\sum_{i=1}^{3}\left(2 S_{D_{i}}+S_{N_{i}}\right)\right] \text {, } \\
& S_{L_{3}}=-\frac{1}{2}\left[2 S_{L_{1}}+2 S_{L_{2}}+3 \sum_{i=1}^{3}\left(S_{D_{i}}+S_{N_{i}}\right)\right] \text {, } \\
& S_{E_{3}}=-S_{E_{1}}-S_{E_{2}}+\sum^{3}\left(3 S_{D_{i}}+2 S_{N_{i}}\right) .
\end{aligned}
$$

Solution Space

Is called a projective variety, i.e. not a manifold (in \mathbb{Q} anyway, but also there are singular cases of lines within planes where the dimensionality decreases).

Over-parameterisation in terms of 18 integers

$$
\begin{aligned}
S_{Q_{1}}, S_{Q_{2}}, S_{U_{1}}, S_{U_{2}}, S_{D_{1}}, S_{D_{2}}, & S_{D_{3}}, S_{L_{1}}, S_{L_{2}}, S_{E_{1}}, S_{E_{2}} \\
& S_{N_{1}}, S_{N_{2}}, S_{N_{3}}, a, b, r, t \in \mathbb{Q}
\end{aligned}
$$

It is at most 11-dimensional. $S \cdot C=S \cdot B=0$. An inverse ($S=T, a=0, b=1, r=0, t=1$), was checked against 21549920 all Anomaly-free Atlas solns.

Caveat?

Anomalies can be cancelled by a Wess-Zumino term, a higher dimension \mathcal{L} operator of topological origin. These can eg be obtained by integrating out heavy states.

Generic ones are hard to generate whilst making the relevant heavy states heavy from $u(1)$ spontaneous breakdown.

Other Constraints

Consider perturbativity:

$$
\begin{aligned}
& \frac{d \ln g}{d \ln \mu}=\frac{g^{2} \sum_{i \in \chi \cup V} z_{i}^{2}}{24 \pi^{2}}<1 \\
& \Leftrightarrow g<\frac{2 \pi \sqrt{6}}{\sqrt{\sum_{i \in \chi \cup V} z_{i}^{2}}} .
\end{aligned}
$$

Summary

Using techniques from number theory and algebraic geometry

We have a general solution to the full set of anomaly equations for SM rank extensions with 3 RH neutrinos.

The couplings and phenomenology of a resulting Z^{\prime} depend upon these. Model extensions also depend upon them.

Strange b Activity

$R_{K}^{(*)}$ in Standard Model

$$
R_{K}=\frac{B R\left(B \rightarrow K \mu^{+} \mu^{-}\right)}{B R\left(B \rightarrow K e^{+} e^{-}\right)}, \quad R_{K^{*}}=\frac{B R\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)}{B R\left(B \rightarrow K^{*} e^{+} e^{-}\right)} .
$$

These are rare decays (each $\mathrm{BR} \sim \mathcal{O}\left(10^{-7}\right)$) because they are absent at tree level in SM.

$\mathbf{L H C b} B^{0} \rightarrow K^{0^{*}} e^{+} e^{-}$Event 4

Picture from CERN Courier April 2018
$R_{K^{(*)}}$
LHCb results: $q^{2}=m_{l l}^{2}$.

	q^{2} / GeV^{2}	SM	LHCb 3 fb	σ
R_{K}	$[1,6]$	1.00 ± 0.01	0.846 ± 0.06	2.5
$R_{K^{*}}$	$[0.045,1.1]$	0.91 ± 0.03	$0.66_{-0.07}^{+0.11}$	2.2
$R_{K^{*}}$	$[1.1,6]$	1.00 ± 0.01	$0.69_{-0.07}^{+0.11}$	2.5

$B_{s} \rightarrow \mu^{+} \mu^{-}$

Lattice QCD provides important input to ${ }^{5}$

$$
B R\left(B_{s} \rightarrow \mu \mu\right)_{S M}=(3.65 \pm 0.23) \times 10^{-9},
$$

$B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)\left(3.0 \pm 0.6_{-0.2}^{+0.3}\right) \times 10^{-9}$
$(2.9-0.6 \pm \pm 0.2) \times 10^{-9}$
$\left(2.8_{-0.7}^{10.8}\right) \times 10^{-9}$
${ }^{5}$ Bobeth et al, 1311.0903
$B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$

Decay fully described by three helicity angles $\vec{\Omega}=\left(\theta_{\ell}, \theta_{K}, \phi\right)$ and $q^{2}=m_{\mu \mu}^{2}$

$$
\begin{aligned}
\frac{1}{\mathrm{~d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \vec{\Omega}} & =\frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right. \\
& -F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi \\
& +S_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+S_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi \\
& +\frac{4}{3} A_{\mathrm{FB}} \sin ^{2} \theta_{K} \cos \theta_{\ell}+S_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi \\
& \left.+S_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{aligned}
$$

P_{5}^{\prime}

Hadronic Uncertainties

- Hadronic effects like charm loop are photon-mediated \Rightarrow vector-like coupling to leptons just like C_{9}

- How to disentangle NP \leftrightarrow QCD?
- Hadronic effect can have different q^{2} dependence
- Hadronic effect is lepton flavour universal ($\rightarrow R_{K}$!)

Wilson Coefficients $\bar{c}_{i j}^{l}$ In SM, can form an EFT since $m_{B} \ll M_{W}$:

$$
\begin{aligned}
\mathcal{O}_{i j}^{l}= & \left(\bar{s} \gamma^{\mu} P_{i} b\right)\left(\bar{l} \gamma_{\mu} P_{j} l\right) \\
\mathcal{L}_{\text {eff }} \supset & \sum_{l=e, \mu, \tau} \sum_{i=L, R} \sum_{j=L, R} \frac{c_{i j}^{l}}{\Lambda_{l, i j}^{2}} \mathcal{O}_{i j}^{l}, \\
= & \sum_{l=e, \mu, \tau} V_{t b} V_{t s}^{*} \frac{\alpha}{4 \pi v^{2}}\left(\bar{c}_{L L}^{l} \mathcal{O}_{L L}^{l}+\bar{c}_{L R}^{l} \mathcal{O}_{L R}^{l}\right. \\
& \left.+\bar{c}_{R L}^{l} \mathcal{O}_{R L}^{l}+\bar{c}_{R R}^{l} \mathcal{O}_{R R}^{l}\right) \\
\Rightarrow \bar{c}_{i j}^{l}= & (36 \mathrm{TeV} / \Lambda)^{2} c_{i j}^{l} .
\end{aligned}
$$

$c_{i j}^{l} \sim \pm \mathcal{O}(1)$ all predicted by weak interactions in SM.

Which Ones Work?

Options for a single BSM operator:

- $\bar{c}_{i j}^{e}$ operators fine for $R_{K^{(*)}}$ but are disfavoured by global fits including other observables.
- $\bar{c}_{L R}^{\mu}$ disfavoured: predicts enhancement in both R_{K} and $R_{K^{*}}$
- $\bar{c}_{R R^{\prime}}^{\mu}, \bar{c}_{R L}^{\mu}$ disfavoured: they pull R_{K} and $R_{K^{*}}$ in opposite directions.
- $\bar{c}_{L L}^{\mu}=-1.06$ fits well globally ${ }^{6}$.
${ }^{6}$ D'Amico et al, 1704.05438; Aebischer et al 1903.10434.

Statistics ${ }^{7}$

	$\bar{c}_{L L}^{\mu}$	$\sqrt{\chi_{S M}^{2}-\chi_{\text {best }}^{2}}$
clean	-1.33 ± 0.34	4.1
dirty	-1.33 ± 0.32	4.6
all	-1.06 ± 0.16	6.5
	$C_{9}^{\mu}=\left(\bar{c}_{L L}^{\mu}+\bar{c}_{L R}^{\mu}\right) / 2$	$\sqrt{\chi_{S M}^{2}-\chi_{\text {best }}^{2}}$
clean	-1.51 ± 0.46	3.9
dirty	-1.15 ± 0.17	5.5
all	-0.95 ± 0.15	5.8

${ }^{7}$ 'clean' ($R_{K}, R_{K^{*}}, B_{s} \rightarrow \mu \mu$) and 'dirty' ($P_{5}^{\prime}, B \rightarrow \phi \mu \mu+100$ others).
D'Amico, Nardecchia, Panci, Sannino, Strumia, Torre, Urbano 1704.05438; Aebischer, Altmanshoffer, Guadagnoli, Reboud, Stangl, Straub, 1903.10434. SM p-value around 3σ for NCBAs.

Simplified Models for $c_{L L}^{\mu}$

At tree-level, we have:

$B_{s}-\bar{B}_{s}$ Mixing

${ }^{8}$ King, Lenz, Rauh, arXiv:1904.00940

$Z^{\prime} \rightarrow \mu \mu$ ATLAS 13 TeV 139 fb^{-1}

ATLAS analysis: look for two track-based isolated μ, $p_{T}>30 \mathrm{GeV}$. One reconstructed primary vertex. Keep only highest scalar sum p_{T} pair ${ }^{9}$

$$
m_{\mu_{1} \mu_{2}}^{2}=\left(p_{1}^{\mu}+p_{2}^{\mu}\right)\left(p_{1 \mu}+p_{2 \mu}\right)
$$

CMS also have released ${ }^{10}$ a similar $36 \mathrm{fb}^{-1}$ analysis.

[^0]

ATLAS $l^{+} l^{-}$limits

During the 1990s

We wanted to be the Grand Architects, searching for the string model to rule them all

During the 2010s

We are happy with any beyond the Standard Model roof

A Model

BCA, Davighi, arXiv:1809.01158: Add complex SM singlet scalar θ and gauged $U(1)_{F}$:

$$
\begin{array}{r}
S U(3) \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{F} \\
\qquad\langle\theta\rangle \sim \text { Several TeV } \\
S U(3) \times S U(2)_{L} \times U(1)_{Y} \\
\downarrow\langle H\rangle \sim 246 \mathrm{GeV} \\
S U(3) \times U(1)_{e m}
\end{array}
$$

- SM fermion content
- anomaly cancellation
- $0 F$ charges for first two generations

The Flavour Problem

The Flavour Problem

Unique Solution

$$
\begin{array}{cccc}
\hline F_{Q_{i}^{\prime}}=0 & F_{u_{R_{i}^{\prime}}}=0 & F_{d_{R i}^{\prime}}=0 & F_{L_{i}^{\prime}}=0 \\
F_{e_{R_{i}^{\prime}}}=0 & F_{H}=-1 / 2 & F_{Q_{3}^{\prime}}=1 / 6 & F_{u_{R 3}^{\prime}}=2 / 3 \\
F_{d_{R 3}^{\prime}}=-1 / 3 & F_{L_{3}^{\prime}}=-1 / 2 & F_{e_{R 3}^{\prime}}=-1 & F_{\theta} \neq 0
\end{array}
$$

$\mathcal{L}=Y_{t} \overline{Q_{3}{ }_{L}^{\prime}} H t_{R}^{\prime}+Y_{b} \overline{Q_{3 L}^{\prime}} H^{c} b_{R}^{\prime}+Y_{\tau} \overline{L_{3}{ }_{L}^{\prime}} H^{c} \tau_{R}^{\prime}+H . c .$,

Yukawa Advantages

- First two families massless at renormalisable level
- Their masses and fermion mixings generated by small non-renormalisable operators

This explains the hierarchical heaviness of the third family and small CKM angles

$Z-X$ mixing

Because $F_{H}=-1 / 2, Z-X$ mix:

$$
\mathcal{M}_{N}^{2}=\frac{v^{2}}{4}\left(\begin{array}{ccc}
g^{\prime 2} & -g g^{\prime} & g^{\prime} g_{F} \\
-g g^{\prime} & g^{2} & -g g_{F} \\
g^{\prime} g_{F} & -g g_{F} & g_{F}^{2}\left(1+4 F_{\theta}^{2} r^{2}\right)
\end{array}\right)=\begin{aligned}
& -B_{\mu} \\
& -W_{\mu}^{3} \\
& -X_{\mu}
\end{aligned}
$$

- $v \approx 246 \mathrm{GeV}$ is SM Higgs VEV
- $g_{F}=U(1)_{F}$ gauge coupling
- $r \equiv v_{F} / v \gg 1$, where $v_{F}=\langle\theta\rangle$
- F_{θ} is F charge of θ field

$Z-X$ mixing angle

$$
\sin \alpha_{z} \approx \frac{g_{F}}{\sqrt{g^{2}+g^{\prime 2}}}\left(\frac{M_{Z}}{M_{Z}^{\prime}}\right)^{2} \ll 1
$$

This gives small non-flavour universal couplings to the Z boson propotional to g_{F} and:

$$
Z_{\mu}=\cos \alpha_{z}\left(-\sin \theta_{w} B_{\mu}+\cos \theta_{w} W_{\mu}^{3}\right)+\sin \alpha_{z} X_{\mu},
$$

$$
\begin{aligned}
& \mathcal{L}_{X \psi}=g_{F}\left(\frac{1}{6} \overline{\mathbf{u}_{\mathbf{L}}} \Lambda^{\left(u_{L}\right)} \gamma^{\rho} \mathbf{u}_{\mathbf{L}}+\frac{1}{6} \overline{\mathbf{d}_{\mathbf{L}}} \Lambda^{\left(d_{L}\right)} \gamma^{\rho} \mathbf{d}_{\mathbf{L}}-\right. \\
& \frac{1}{2} \overline{\mathbf{n}_{\mathbf{L}}} \Lambda^{\left(n_{L}\right)} \gamma^{\rho} \mathbf{n}_{\mathbf{L}}-\frac{1}{2} \overline{\mathbf{e}_{\mathbf{L}}} \Lambda^{\left(e_{L}\right)} \gamma^{\rho} \mathbf{e}_{\mathbf{L}}+ \\
& \frac{2}{3} \overline{\mathbf{u}_{\mathbf{R}}} \Lambda^{\left(u_{R}\right)} \gamma^{\rho} \mathbf{u}_{\mathbf{R}}- \\
&\left.\frac{1}{3} \overline{\mathbf{d}_{\mathbf{R}}} \Lambda^{\left(d_{R}\right)} \gamma^{\rho} \mathbf{d}_{\mathbf{R}}-\overline{\mathbf{e}_{\mathbf{R}}} \Lambda^{\left(e_{R}\right)} \gamma^{\rho} \mathbf{e}_{\mathbf{R}}\right) Z_{\rho}^{\prime}, \\
& \\
& \Lambda^{(I)} \equiv \quad V_{I}^{\dagger} \xi V_{I}, \quad \xi=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Z^{\prime} couplings, $I \in\left\{u_{L}, d_{L}, e_{L}, \nu_{L}, u_{R}, d_{R}, e_{R}\right\}$

A simple limiting case

$$
V_{u_{R}}=V_{d_{R}}=V_{e_{R}}=1
$$

for simplicity and the ease of passing bounds.

$$
\begin{aligned}
& V_{d_{L}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{s b} & -\sin \theta_{s b} \\
0 & \sin \theta_{s b} & \cos \theta_{s b}
\end{array}\right), \quad V_{e_{L}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \\
& \Rightarrow V_{u_{L}}=V_{d_{L}} V_{C K M}^{\dagger} \text { and } V_{\nu_{L}}=V_{e_{L}} U_{P M N S}^{\dagger} .
\end{aligned}
$$

Important Z^{\prime} Couplings

$$
\begin{gathered}
g_{F}\left[\frac{1}{6} \overline{\mathbf{d}_{\mathbf{L}}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \sin ^{2} \theta_{s b} & \frac{1}{2} \sin 2 \theta_{s b} \\
0 & \frac{1}{2} \sin 2 \theta_{s b} & \cos ^{2} \theta_{s b}
\end{array}\right) \not \mathbb{Z}^{\prime}\left(\begin{array}{c}
d_{L} \\
s_{L} \\
b_{L}
\end{array}\right)+\right. \\
\left.\quad-\frac{1}{2} \overline{\mathbf{e}_{\mathbf{L}}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right){\not{ }^{\prime}}^{\prime}\left(\begin{array}{l}
e_{L} \\
\mu_{L} \\
\tau_{L}
\end{array}\right)\right]
\end{gathered}
$$

Put $\left|\theta_{s b}\right| \sim \mathcal{O}\left(\left|V_{t s}\right|\right)=0.04$, so $\left|g_{\mu \mu}\right| \gg\left|g_{b s}\right|$, which helps us survive $B_{s}-\overline{B_{s}}$ constraint.
$c_{L L}=g_{F}^{2} \sin 2 \theta_{s b} /\left(24 M_{Z^{\prime}}^{2}\right)$.

$g_{F} \propto M_{Z^{\prime}} / \sqrt{\sin 2 \theta_{b s}}$

Example Case Predictions

Mode	BR	Mode	BR	Mode	BR
$t \bar{t}$	0.42	$b \bar{b}$	0.12	$\nu \bar{\nu}^{\prime}$	0.08
$\mu^{+} \mu^{-}$	0.08	$\tau^{+} \tau^{-}$	0.30	other $f_{i} f_{j}$	$\sim \mathcal{O}\left(10^{-4}\right)$

LEP LFU

$$
g_{F}^{2}\left(\frac{M_{Z}}{M_{Z^{\prime}}}\right)^{2} \leq 0.004 \Rightarrow g_{F} \leq \frac{M_{Z^{\prime}}}{1.3 \mathrm{TeV}}
$$

It's worth chasing $B R\left(B \rightarrow K^{(*)} \tau^{ \pm} \tau^{\mp}\right)$.

Backup

A Warm Up: $U(1)$

Pioneering solution to ACCs: Costa, Dobrescu, Fox, arxiv:1905.13729. n chiral fermions with charges z_{i} :

$$
\begin{align*}
& z_{1}^{3}+\ldots+z_{n}^{3}=0 \\
& z_{1}+\ldots+z_{n}=0 \tag{1}
\end{align*}
$$

Given 2 solutions $\underline{x}, \underline{y}$, construct a third by "merger"

$$
\{\underline{x}\} \oplus\{\underline{y}\}:=\left(\sum_{i=1}^{n} x_{i} y_{i}^{2}\right)\{\underline{x}\}-\left(\sum_{i=1}^{n} x_{i}^{2} y_{i}\right)\{\underline{y}\} .
$$

Want to find suitably general solutions $\underline{x}, \underline{y}$.

Example: even n

$$
\begin{aligned}
\{\underline{x}\} & =\left\{l_{1}, k_{1}, \ldots, k_{m},-l_{1},-k_{1}, \ldots,-k_{m}\right\} \\
\{\underline{y}\} & =\left\{0,0, l_{1}, \ldots, l_{m},-l_{1}, \ldots,-l_{m}\right\}, \\
m & =n / 2-1 \geq 2, \quad 1 \leq i \leq m
\end{aligned}
$$

$\{\underline{x}\}$ and $\{\underline{y}\}$ are each vector-like solutions but it turns out that $\{\underline{x}\} \oplus\{\underline{y}\}$ is a new chiral solution.
$\{\underline{x}\} \oplus\{\underline{y}\}$ parameterises all solutions up to permutations.
There is a similar story for odd n.

Mordell's Theorem ${ }^{11}$

Skew Γ_{1}, Γ_{2} in $c=0 \Rightarrow$ all rational points on c can be found this way.

${ }^{11}$ Mordell (1969) Diophantine Equations

Geometric Understanding

In BCA, Gripaios, Tooby-Smith, arXiv:1912.04804, we provide a geometric understanding of this. First, note that each solution in \mathbb{Q} is equivalent to one in \mathbb{Z} by clearing denominators. Using gravitational anomaly cancellation, eliminate z_{n} to obtain the homogeneous cubic

$$
\sum_{i=1}^{n-1} z_{i}^{3}-\left(\sum_{i=1}^{n-1} z_{i}\right)^{3}=0
$$

defining a cubic hypersurface in \mathbb{Q}^{n-1}.

Special Surface

In fact, our cubic hypersurface is rather special: no purely cubic terms in any one variable: (add perms) $n=3: \underline{z}=[-a: 0: a]$, ie three lines $z_{3}=-z_{1}, z_{2}=0$

$n=4: \underline{z}=[-x:-y: x: y], x, y \in \mathbb{Q}$ ie three planes

Strategy

1. Find solutions for SM fermions charges from first 4
2. Apply $G L(3, \mathbb{Z})$ transformation to species F : $F_{+}:=F_{1}+F_{2}+F_{3}, F_{\alpha}:=F_{1}-F_{2}, F_{\beta}:=F_{2}+F_{3}$.
3. Linear equations become

$$
D_{+}=-2 Q_{+}-U_{+}, L_{+}=-3 Q_{+}, E_{+}=2 Q_{+}-U_{+} .
$$

4. Quadratic is a solveable homogeneous diophantine equation of degree 2 in the 12-tuple

$$
X:=\left(Q_{+}, U_{+}, Q_{\alpha}, Q_{\beta}, U_{\alpha}, U_{\beta}, D_{\alpha}, D_{\beta}, L_{\alpha}, L_{\beta}, E_{\alpha}, E_{\beta}\right)
$$

$X^{T} H X=0$ defines hypersurface $\Gamma \in P \mathbb{Q}^{11}$.

Quadratic

$$
X^{T} H X=0
$$

Consider lines $L=\alpha \tilde{X}+\beta R$ through a known solution $\tilde{X} \in P \mathbb{Q}^{11}$, where $R \in P \mathbb{Q}^{11}$, and $[\alpha: \beta] \in P \mathbb{Q}^{1}:(\mathrm{eg} \tilde{X}$ has all zero except $Q_{\alpha}=L_{\alpha}=1$)

$$
\beta\left(2 R^{T} H \tilde{X} \alpha+R^{T} H R \beta\right)=0
$$

Using same trick as before

$$
X=\left(R^{T} H R\right) \tilde{X}-2\left(R^{T} H \tilde{X}\right) R .
$$

Solution In Detail

$$
Q_{\alpha}=2 R_{Q_{\alpha}} \Lambda+\Sigma, \quad L_{\alpha}=2 R_{L_{\alpha}} \Lambda+\Sigma
$$

where $\Sigma=R^{T} H R$ and

$$
\Lambda=\left(8_{R_{Q+}}+2 R_{L_{\alpha}}+3 R_{L_{\beta}}-2 R_{Q_{\alpha}}-3 R_{Q_{\beta}}\right)
$$

All other charges X are $2 R_{X} \Lambda$, where $R_{X} \in \mathbb{Z}$.

$$
\begin{aligned}
R:= & \left\{R_{Q_{+}}, R_{U_{+}}, R_{Q_{\alpha}}, R_{Q_{\beta}}, R_{U_{\alpha}}, R_{U_{\beta}}, R_{D_{\alpha}}, R_{D_{\beta}},\right. \\
& \left.R_{L_{\alpha}}, R_{L_{\beta}}, R_{E_{\alpha}}, R_{E_{\beta}}\right\} .
\end{aligned}
$$

Then, invert the $G L(3, \mathbb{Z})$.

SM Singlets

Adding n SM singlets with $U(1)$ charges decouples the last two equations. Results:

- We can always find a full solution for $n \geq 5$, eg: $(M / 6 \in \mathbb{Z})\{M / 6+1, M / 6-1,-M / 6,-M / 6, J\}$
- For lower n, we give restrictions on M, J for when a solution exists.

However, annoyingly, we only have a partial solution for the full 6 equations together.
$R_{K^{(*)}}$ pre Moriond 2019
LHCb results from 7 and $8 \mathrm{TeV}: q^{2}=m_{l l}^{2}$.

	q^{2} / GeV^{2}	SM	$\mathrm{LHCb} 3 \mathrm{fb}^{-1}$	σ
R_{K}	$[1,6]$	1.00 ± 0.01	$0.745_{-0.074}^{+0.090}$	2.6
$R_{K^{*}}$	$[0.045,1.1]$	0.91 ± 0.03	$0.66_{-0.07}^{+0.11}$	2.2
$R_{K^{*}}$	$[1.1,6]$	1.00 ± 0.01	$0.69_{-0.07}^{+0.11}$	2.5

Deformed TFHM

$$
\begin{array}{cccc}
F_{Q_{i}^{\prime}}=0 & F_{u_{R i}^{\prime}}=0 & F_{d_{R i}^{\prime}}=0 & F_{H}=-1 / 2 \\
F_{e_{R 1}^{\prime}}=0 & F_{e_{R_{2}^{\prime}}^{\prime}}=2 / 3 & F_{e_{R_{3}^{\prime}}}=-5 / 3 & \\
F_{L_{1}^{\prime}}=0 & F_{L_{2}^{\prime}}=5 / 6 & F_{L_{3}^{\prime}}=-4 / 3 & \\
F_{Q_{3}^{\prime}}=1 / 6 & F_{u_{R 3}^{\prime}}=2 / 3 & F_{d_{R 3}^{\prime}}=-1 / 3 & F_{\theta} \neq 0
\end{array}
$$

$$
\mathcal{L}=Y_{t} \overline{Q_{3}{ }_{L}^{\prime}} H t_{R}^{\prime}+Y_{b} \overline{Q_{3 L}^{\prime}} H^{c} b_{R}^{\prime}+H . c .
$$

Invisible Width of Z Boson

$\Gamma_{\text {inv }}^{(\text {exp })}=499.0 \pm 1.5 \mathrm{MeV}$, whereas $\Gamma_{\text {inv }}^{(S M)}=501.44 \mathrm{MeV}$.

$$
\begin{aligned}
\Rightarrow \Delta \Gamma^{(\exp)}= & \Gamma_{\mathrm{inv}}^{(\exp)}-\Gamma_{\mathrm{inv}}^{(\mathrm{SM})}=-2.5 \pm 1.5 \mathrm{MeV} \\
\mathcal{L}_{\bar{\nu} \nu Z}= & -\frac{g}{2 \cos \theta_{w}} \overline{\nu_{L e}^{\prime}} \mathrm{Z}^{\prime} P_{L} \nu_{L e}^{\prime} \\
& -\overline{\nu_{L \mu}^{\prime}}\left(\frac{g}{2 \cos \theta_{w}}+\frac{5}{6} g_{F} \sin \alpha_{z}\right) \not 中^{\prime} \nu_{L \mu}^{\prime} \\
& -\overline{\nu_{L \tau}^{\prime}}\left(\frac{g}{2 \cos \theta_{w}}-\frac{8}{6} g_{F} \sin \alpha_{z}\right) \not \psi_{\nu_{L \tau}}^{\prime}
\end{aligned}
$$

$$
R_{D^{(*)}}=B R\left(B^{-} \rightarrow D^{(*)} \tau \nu\right) / B R\left(B^{-} \rightarrow D^{(*)} \mu \nu\right)
$$

$R_{D^{(*)}}:$ BSM Explanation

$$
\begin{gathered}
\mathcal{L}_{e f f}=-\frac{2}{\Lambda^{2}}\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{\tau L}\right)+H . c . \\
\Lambda=3.4 \mathrm{TeV}
\end{gathered}
$$

A factor 10 lower than required for $R_{K^{(*)}} \Rightarrow$ different explanation?
$\mathrm{PMP} \Rightarrow$ we ignore $R_{D^{(*)}}$.

Ben Allanach is a professor in the department of applied mathematics and theoretical physics at the University of Cambridge. Along with other members of the Cambridge Supersymmetry Working Group, his research focuses on collider searches for new physics.

Loading audio player...

Brought to you by Curio, an Aeon partner

2,900 words

```
SYndICATE THIS ESSAY
```

T n recent years, physicists have been watching the data coming in from the Large Hadron Collider (LHC) with a growing sense of unease. We've spent decades devising elaborate accounts for the behaviour of the quantum zoo of subatomic particles, the most basic components of the known universe. The Standard Model is

Other conclusions

- The answers to the questions raise by $R_{K^{(*)}}$ may provide a direct experimental probe into the flavour problem.
- Focused on tree-level explanations of $R_{K^{(*)}}$ as they are usually harder to discover: Z^{\prime} and leptoquarks.
- News on $R_{K}^{(*)}$ expected in 2019. At the current central value, Belle II can reach 5σ by mid 2021. LHCb's $R_{K^{*}}$ would be close to ${ }^{12} 5 \sigma$ by 2020.
- $R_{K^{(*)}} \Rightarrow$ HL-LHC, HE-LHC and FCC-hh
${ }^{12}$ Albrecht et al, 1709. 10308

FIG. 10. Neutrino trident process that leads to constraints on the Z^{μ} coupling strength to neutrinos-muons, namely $M_{Z^{\prime}} / g_{v \mu} \gtrsim 750 \mathrm{GeV}$.

$Q_{\max }$	Solutions	Symmetry	Quadratics	Cubics	Time/sec
1	$\mathbf{3 8}$	16	144	38	0.0
2	$\mathbf{3 5 8}$	48	31439	2829	0.0
3	$\mathbf{4 1 1 6}$	154	1571716	69421	0.1
4	$\mathbf{2 4 5 5 2}$	338	34761022	932736	0.6
5	$\mathbf{1 1 1 1 5 2}$	796	442549238	7993169	6.8
6	$\mathbf{4 3 5 3 0 5}$	1218	3813718154	49541883	56

$\mathrm{SM}+3 \nu_{R}$: number of solutions etc

13 TeV ATLAS $3.2 \mathrm{fb}^{-1}$

Neutrino Masses

At dimension 5:

$$
\mathcal{L}_{S S}=\frac{1}{2 M}\left(L_{3}^{\prime T} H^{c}\right)\left(L_{3}^{\prime} H^{c}\right)
$$

but if we add RH neutrinos, then integrate them out

$$
\mathcal{L}_{S S}=1 / 2 \sum_{i j}\left(L_{i}^{\prime} H^{c}\right)\left(M^{-1}\right)_{i j}\left(L_{j}^{\prime} H^{c}\right)
$$

where now $\left(M^{-1}\right)_{i j}$ may well have a non-trivial structure. If $\left(M^{-1}\right)_{i j}$ are of same order, large PMNS mixing results.

Froggatt Neilsen Mechanism ${ }^{13}$

A means of generating the non-renormalisable Yukawa terms, e.g. $F_{\theta}=1 / 6$:

$$
Y_{c} \overline{Q_{L 2}^{\prime(F=0)}} H^{(F=-1 / 2)} c_{R}^{\prime(F=0)} \sim \mathcal{O}\left[\left(\frac{\langle\theta\rangle}{M}\right)^{3} \overline{Q_{L 2}^{\prime}} H c_{R}^{\prime}\right]
$$

${ }^{13}$ C Froggatt and H Neilsen, NPB147 (1979) 277

LQ Models

Scalar ${ }^{14} S_{3}=(\overline{3}, 3,1 / 3)$ of $S U(2) \times S U(2)_{L} \times U(1)_{Y}$:
$\mathcal{L}=\ldots+y_{3 b \mu} Q_{3} L_{2} S_{3}+y_{3 s \mu} Q_{2} L_{2} S_{3}+y_{q} Q Q S_{3}^{\dagger}+$ h.c.
Vector $V_{1}=(\overline{3}, 1,2 / 3)$ or $V_{3}=(3,3,2 / 3)$
$\mathcal{L}=\ldots+y_{3}^{\prime} V_{3}^{\mu} \bar{Q} \gamma_{\mu} L+y_{1} V_{1}^{\mu} \bar{Q} \gamma_{\mu} L+y_{1}^{\prime} V_{1}^{\mu} \bar{d} \gamma_{\mu} l+$ h.c.

$$
\Rightarrow \bar{c}_{L L}^{\mu}=\kappa \frac{4 \pi v^{2}}{\alpha_{\mathrm{EM}} V_{t b} V_{t s}^{*}} \frac{y_{3 b \mu}^{*} y_{3 s \mu}}{M^{2}}
$$

$\kappa=1,-1,-1$ and $y=y_{3}, y_{1}, y_{3}^{\prime}$ for S_{3}, V_{1}, V_{3}.
${ }^{14}$ Capdevila et al 1704.05340, Hiller and Hisandzic 1704.05444, D'Amico et al 1704.05438.

CMS 8 TeV 20fb ${ }^{-1}$ 2nd gen

CMS-PAS-EXO-12-042: $\quad M>1.07 \mathrm{TeV}$.

Other Constraints On LQs

Note that the extrapolation is very rough for pair production. Fix $M=2 M_{L Q}$, assuming they are produced
close to threshold: $\Delta=0.1$.

$$
B_{s}-\bar{B}_{s}
$$ mixing is at one-loop:

$$
\mathcal{L}_{\bar{b} s \bar{b} s}=k \frac{\left|y_{b \mu} y_{s \mu}^{*}\right|^{2}}{32 \pi^{2} M_{L Q}^{2}}\left(\bar{b} \gamma_{\mu} P_{L} s\right)\left(\bar{s} \gamma^{\mu} P_{L} b\right)+\text { h.c. }
$$

$y=y_{3}, y_{1}, y_{3}^{\prime}$ and $k=5,4,20$ for S_{3}, V_{1}, V_{3}.
Data $\Rightarrow c_{L L}^{b b}<1 /(210 \mathrm{TeV})^{2}$.

Mass Constraints: Summary

$$
\begin{array}{l|l}
\hline S_{3} & 41 \mathrm{TeV} \\
V_{1} & 41 \mathrm{TeV} \\
V_{3} & 18 \mathrm{TeV} \\
\hline
\end{array}
$$

Upper mass limits for leptoquarks that satisfy neutral current B-anomaly fits and B_{s}-mixing constraints.

8 TeV CMS 20fb ${ }^{-1}$ 2nd gen

Up to 14 TeV LQs with $100 \mathrm{TeV} 10 \mathrm{ab}^{-1}$ FCC-hh. $M_{L Q}<41 \mathrm{TeV}^{80}$.

LQ Mass Limits

$$
\begin{array}{|l|l|}
\hline S_{3} & 41 \mathrm{TeV} \\
V_{1} & 41 \mathrm{TeV} \\
V_{3} & 18 \mathrm{TeV} \\
\hline
\end{array}
$$

From $B_{s}-\bar{B}_{s}$ mixing and fitting b-anomalies.
Pair production has a reach up to 12 TeV .
The pair production cross-section is insensitive to the representation of $S U(2)$ in this case.

HL-LHC/HE-LHC LQs

Other Flavour Models

Realising ${ }^{15}$ the vector LQ solution based on $P S=$ $\left[S U(4) \times S U(2)_{L} \times S U(2)_{R}\right]^{3}$. SM-like Higgs lies in third generation PS group, explaining large Yukawas (others come from VEV hierarchies). Get $U(2)_{Q} \times U(2)_{L}$ approximate global flavour symmetry.
${ }^{15}$ Di Luzio Greljo, Nardecchia arXiv:1708.08450, Bordone, Cornella, FuentesMartin, Isidori, arXiv:1712.01368

Single Production of LQ

Depends upon LQ coupling as well as LQ mass

Current bound by CMS from 8 TeV $20 \mathrm{fb}^{-1}: M_{L Q}>660$ GeV for $s \mu$ coupling of 1 . We include b as well from NNPDF2.3LO $\left(\alpha_{s}\left(M_{Z}\right)=0.119\right)$, re-summing large logs from initial state b. Integrate $\hat{\sigma}$ with LHAPDF.

$\sigma \mathrm{s}$ for S_{3} with $y_{s \mu}=y_{b \mu}=y$.

Single LQ Production σ

$$
\hat{\sigma}(q g \rightarrow \phi l)=\frac{y^{2} \alpha_{S}}{96 \hat{s}}\left(1+6 r-7 r^{2}+4 r(r+1) \ln r\right)
$$

where ${ }^{16} r=M_{L Q}^{2} / \hat{s}$ and we set $y_{s \mu}=y_{b \mu}=y$.

Supporthe Subscribe Finda job
Guardian
News Opinion Sport Cullture Lifestyle
World uk science cities Global development Football Tech Business More
Science Lifeand Physics
Modelling the fourth colour: dispatch from de
Moriond

Modelling the fourth colour: dispatch from de Moriond

At the particle physics conference, it's clear inconclusive LHCb data are stimulating strange new ideas

Ben Allanach
Sat 17 Mar 201810.15 GMT

f $\quad \boxtimes \cdots$

In the middle of the Rencontres de Moriond particle physics conference in Italy, the scientific talks stopped to allow a standing ovation dedicated to the memory and achievements of my inspirational colleague Stephen Hawking, who we heard had died earlier that day.

The talks quickly resumed, which I think Stephen would have approved of. The most striking thing about the scientific content of the conference this year was that a whole day was dedicated to the weirdness in bottom particles that Tevong You and I wrote about last November. As Marco Nardecchia reviewed in his talk (PDF), bottom particles produced in the LHCb detector in proton collisions are decaying too often in certain particular ways, compared to predictions from the Standard Model of particle physics. Their decay products are coming out with the wrong angles too often compared with predictions, too.

Anomalous bottoms at Cern and the case for a new collider

Read more

We were hoping for an update on the data at the conference: the amount of data has roughly doubled since they were last released, and we need to see the new data to be convinced that something really new is happening in the collisions. I strongly suspect that if the effect is seen in the new data, the theoretical physics community will "go nuts" and we will quickly see the resulting avalanche of papers. If the new data look ordinary, the effect will be forgotten and everyone will move on. Taking such measurements correctly takes care and time, however, and the LHCb experiment didn't release them. We shall have to wait until other conferences later this year for the LHCb to present its analyses of the new data.

There were interesting theory talks on how new forces could explain the strange properties of the bottom particle decays. The full mathematical models look quite baroque: they need a lot of "bells and whistles" in order to pass other experimental tests. But these models prove that it can be done, and they are quite different to what has been proposed before.

One of them even unifies different classes of particle (leptons and quarks), describing the lepton as the "fourth colour" of a quark. We are used to the idea that quarks come in three (otherwise identical) copies: physicists label them red, green and blue to distinguish them. As Javier Fuentes-Martin describe (PDF), once you design the mathematics to make leptons the fourth colour, the exiftence of a new force-carrying particle with iust the correct properties to break up the

News | | Opinion | Sport | Culture | Lifestyle |
| :--- | :--- | :--- | :--- | :--- |

UK World Business Football UK politics Environment Education Society Science More

Cern

Cern draws up plans for collider four times the size of Large Hadron

The Future Circular Collider would smash particles together in a tunnel 100km long

LHC / HL-LHC Plan

LHC Upgrades

High Luminosity (HL) LHC: go to $3000 \mathrm{fb}^{-1}\left(3 \mathrm{ab}^{-1}\right)$.
High Energy (HE) LHC: Put FCC magnets (16 Tesla rather than 8.33 Tesla) into LHC ring: roughly twice collision energy: 27 TeV .

Properties of anomaly-free solutions

[^0]: ${ }^{9} 1903.06248$
 ${ }^{10} 1803.06292$

