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link to CDR

in a 100km tunnel around CERN

• e+e– @ 91, 160, 240, 365 GeV

• pp @ 100 TeV

• e60GeV p50TeV @ 3.5 TeV

Future Circular Colliders

link to CDR

• e+e– @ 91, 240 GeV (but possibly 160 & 350)
• Future possible pp @ ~70 TeV and e60GeV p35TeV

in a 100km tunnel in China

⇒ see Mike Koratzinos FMS on August 13

⇒ see Jie Gao FMS next week



Additional material: 
recent reports on Future Circular Colliders
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• FCC CDR:
• Vol.1: Physics Opportunities (CERN-ACC-2018-0056) http://cern.ch/go/Nqx7
• Vol.2: The Lepton Machine (CERN-ACC-2018-0057) http://cern.ch/go/7DH9
• Vol.3: The Hadron Machine (CERN-ACC-2018-0058), http://cern.ch/go/Xrg6
• Vol.4: High-Energy LHC (CERN-ACC-2018-0059) http://cern.ch/go/S9Gq

• "Physics at 100 TeV", CERN Yellow Report: https://arxiv.org/abs/1710.06353

• CEPC CDR: Physics and Detectors

http://cern.ch/go/Nqx7
http://cern.ch/go/7DH9
http://cern.ch/go/Xrg6
http://cern.ch/go/S9Gq
https://arxiv.org/abs/1710.06353
http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf
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• having important questions to pursue 

• creating opportunities to answer them 

• being able to constantly add to our knowledge, 
while seeking those answers

The next steps in HEP build on
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•Data driven:
• DM
• Neutrino masses
• Matter vs antimatter asymmetry
• Dark energy
• …

•Theory driven:
• The hierarchy problem and naturalness
• The flavour problem (origin of fermion families, mass/mixing 

pattern)
• Quantum gravity
• Origin of inflation
• …

The important questions
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• For none of these questions, the path to an answer is unambiguously defined. 

• Two examples: 
• DM: could be anything from fuzzy 10–22 eV scalars, to O(TeV) WIMPs, to multi-M⦿ 

primordial BHs, passing through axions and sub-GeV DM
• a vast array of expts is needed, even though most of them will end up empty-

handed…
• Neutrino masses: could originate anywhere between the EW and the GUT scale
• we are still in the process of acquiring basic knowledge about the neutrino 

sector: mass hierarchy, majorana nature, sterile neutrinos, CP violation, 
correlation with mixing in the charged-lepton sector (μ→eγ, H→μτ, …): as 
for DM, a broad range of options

• We cannot objectively establish a hierarchy of relevance among the fundamental 
questions. The hierarchy evolves with time (think of GUTs and proton decay 
searches!) and is likely subjective. It is also likely that several of the big questions 
are tied together and will find their answer in a common context  (eg DM and 
hierarchy problem, flavour and nu masses, quantum gravity/inflation/dark energy, …)

The opportunities

One question, however, has emerged in stronger and stronger terms from 
the LHC, and appears to single out a unique well defined direction….
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v
H0

Who ordered that ?

We must learn to appreciate the depth and the value of this 
question, which is set to define the future of collider physics

V(H) = – μ2 |H|2 + λ |H|4



Electromagnetic vs Higgs dynamics

q1 q2

r

V(r) = +
r 1

q1 x q2

sign fixed 
by photon 
spin

power determined by gauge 
invariance/charge 
conservation/Gauss theorem

quantized, 
in units of 
fixed charge

v
H0

VSM (H) = �µ
2 |H|2 + � |H|4

both sign 
and value 
totally 
arbitrary

>0 to ensure 
stability, but 
otherwise arbitrary

any function of |H|2 would be 
ok wrt known symmetries



a historical example: 
superconductivity

•The relation between the Higgs phenomenon and the SM is similar to 
the relation between superconductivity and the Landau-Ginzburg 
theory of phase transitions: a quartic potential for a bosonic order 
parameter, with negative quadratic term, and the ensuing symmetry 
breaking. If superconductivity had been discovered after Landau-
Ginzburg, we would be in a similar situations as we are in today: an 
experimentally proven phenomenological model. But we would still lack 
a deep understanding of the relevant dynamics.

• For superconductivity, this came later, with the identification of e–e– 
Cooper pairs as the underlying order parameter, and BCS theory. In 
particle physics, we still don’t know whether the Higgs is built out of 
some sort of Cooper pairs (composite Higgs) or whether it is 
elementary, and in both cases we have no clue as to what is the 
dynamics that generates the Higgs potential. With Cooper pairs it 
turned out to be just EM and phonon interactions. With the Higgs, none 
of the SM interactions can do this, and we must look beyond.
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• BCS-like: the Higgs is a composite object

• Supersymmetry: the Higgs is a fundamental field and

• λ2 ~  g2+g’2 , it is not arbitrary (MSSM, w/out susy breaking, has 
one parameter less than SM!)

• potential is fixed by susy & gauge symmetry
• EW symmetry breaking (and thus mH and λ) determined by the 

parameters of SUSY breaking

• …

examples of possible scenarios



Decoupling of high-frequency modes
VSM (H) = �µ

2 |H|2 + � |H|4

q

ΣR

R

short-scale physics does not alter 
the charge seen at large scales

Z

⌃R

~rVq · d~� = 4⇡q, 8R

h

h

= +

h

h

t

– yt4

h

λ4

+

λλren

dλ
d log μ ∝ λ4 – yt4⟹ ∝ a mH4 – b mt4

high-energy modes can change size and sign of 
both μ2 and λ, dramatically altering the stability 
and dynamics => hierarchy problem

E&M

+= +

μ2 ren μ2 – yt2g2

Δμ2 ~ ( cB mB2 – cF mF2 ) x ( Λ / v)2

tW,H



bottom line

• To predict the properties of EM at large scales, we don’t need 
to know what happens at short scales

• The Higgs dynamics is sensitive to all that happens at any scale 
larger than the Higgs mass !!! A very unnatural fine tuning is 
required to protect the Higgs dynamics from the dynamics at 
high energy

• This issue goes under the name of hierarchy problem

• Solutions to the hierarchy problem require the introduction of 
new symmetries (typically leading to the existence of new 
particles), which decouple the high-energy modes and allow the 
Higgs and its dynamics to be defined at the “natural” scale 
defined by the measured parameters v and mH 

⇒ naturalness
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Examples
• Supersymmetry: stop vs top (colored naturalness)

• Extra-dimensions: Planck scale closer than in 4-D, or Higgs as 4-
D scalar component of a higher-dim gauge vector (KK modes, etc)

• Little Higgs: Higgs as a pseudo-Nambu-Goldstone boson of a 
larger symmetry, mass protected by global symmetries (top 
partners)

• Neutral naturalness: top contributions canceled by triplets of 
new particles neutral under SM gauge groups, but sharing the Higgs 
couplings with SM fermions (Higgs portals). Typically comes with 
doubling of (part of) SM gauge group (eg SU(3)AxSU(3)B). 
• twin Higgs

• folded SUSY (SU(3)B stops cancel Higgs couplings to SU(3)A tops)
 13
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• The search for a natural solution to the hierarchy problem is 
unavoidably tied to BSM physics, and has provided so far an obvious 
setting for the exploration of the dynamics underlying the Higgs 
phenomenon. 

• Lack of experimental evidence so far for a straightforward answer to 
naturalness, forces us to review our biases, and to take a closer look 
even at the most basic assumptions about Higgs properties 
• again, “who ordered that?”
• in this perspective, even innocent questions like whether the Higgs gives mass 

also to 1st and 2nd generation fermions call for experimental verification, 
nothing of the Higgs boson can be given for granted

• what we’ve experimentally proven so far are basic properties, which, from the 
perspective of EFT and at the current level of precision of the measurements, 
hold true in a vast range of BSM EWSB scenarios

➡ the Higgs discovery does not close the book, it opens a whole new 
chapter of exploration, based on precise measurements of its 
properties, which can only rely on a future generation of colliders

The hierarchy problem



• Is the Higgs the only (fundamental?) scalar field, or are there other 
Higgs-like states (e.g. H±, A0, H±±, ... , EW-singlets, ....) ?
• Do all SM families get their mass from the same Higgs field?
• Do I3=1/2 fermions (up-type quarks) get their mass from the same Higgs 

field as I3=–1/2 fermions (down-type quarks and charged leptons)?
• Do Higgs couplings conserve flavour? H→μτ? H→eτ? t→Hc?

• Is there a deep reason for the apparent metastability of the Higgs 
vacuum?

• Is there a relation among Higgs/EWSB, baryogenesis, Dark Matter, 
inflation? 

• What happens at the EW phase transition (PT) during the Big Bang?
• what’s the order of the phase transition?
• are the conditions realized to allow EW baryogenesis? 

Other important open issues 
on the Higgs sector
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• Is the mass scale beyond the LHC reach ?

• Is the mass scale within LHC’s reach, but final states are 
elusive to the direct search ?

Key question for the future developments of HEP: 
Why don’t we see the new physics we expected to 

be present around the TeV scale ?

These two scenarios are a priori equally likely, but they impact in 
different ways the future of HEP, and thus the assessment of the physics 
potential of possible future facilities

Readiness to address both scenarios is the best hedge for the field:
• precision
• sensitivity (to elusive signatures)
• extended energy/mass reach



Remark 

the discussion of the future in HEP must start from the 

understanding that there is no experiment/facility, proposed 

or conceivable, in the lab or in space, accelerator or non-

accelerator driven, which can guarantee discoveries 

beyond the SM, and answers to the big questions of the 

field
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(1) the guaranteed deliverables: 
• knowledge that will be acquired independently of possible 

discoveries (the value of “measurements”)

(2) the exploration potential: 
• target broad and well justified BSM scenarios .... but guarantee 

sensitivity to more exotic options
• exploit both direct (large Q2) and indirect (precision) probes

(3) the potential to provide conclusive yes/no answers to relevant, 
broad questions.
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The physics potential (the “case”) of a future facility for HEP should 
be weighed against criteria such as:
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• Guaranteed deliverables:
• study of Higgs and top quark properties, and exploration of EWSB 

phenomena, with the best possible precision and sensitivity

• Exploration potential:
• exploit both direct (large Q2) and indirect (precision) probes
• enhanced mass reach for direct exploration at 100 TeV

• E.g. match the mass scales for new physics that could be exposed via 
indirect precision measurements in the EW and Higgs sector

• Provide firm Yes/No answers to questions like:
• is there a TeV-scale solution to the hierarchy problem? 
• is DM a thermal WIMP?
• could the cosmological EW phase transition have been 1st order?
• could baryogenesis have taken place during the EW phase 

transition?
• could neutrino masses have their origin at the TeV scale?
• …

What a future circular collider can offer
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Next I’ll give few examples of the physics 

potential, focusing on the hh case 

(for ee, see Koratzinos’ talk)



Event rates: examples
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FCC-ee H Z W t τ(←Z) b(←Z) c(←Z)

106 5 1012 108 106 3 1011 1.5 1012 1012

FCC-hh H b t W(←t) τ(←W←t)

2.5 1010 1017 1012 1012 1011

FCC-eh H t

2.5 106 2 107



(1)guaranteed deliverables: Higgs properties



Sensitivity of various Higgs couplings 
to examples of 

beyond-the-SM phenomena 
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=> for evidence of 3σ deviations from SM, the 
precision goal should be (sub)percent!



The absolutely unique power of e+e– →ZH (circular or linear): 
• the model independent % measurement of Γ(H), which 

allows the subsequent:
• sub-% measurement of couplings to W, Z, b, τ
• % measurement of couplings to gluon and charm

p(H) = p(e–e+) – p(Z)

=> [ p(e–e+) – p(Z) ]2 peaks at m2(H) 

reconstruct Higgs events independently of the 
Higgs decay mode!

N(ZH) ∝	σ(ZH) ∝	gHZZ2

N(ZH[→ZZ]) ∝		
σ(ZH) x BR(H→ZZ) ∝		
gHZZ2 x gHZZ2 / Γ(H)

=> absolute measurement 
of width and couplings

mrecoil = √ [ p(e–e+) – p(Z) ]2



The absolutely unique power of pp →H+X: 

• the extraordinary statistics that, complemented by the per-mille e+e– 
measurement of eg BR(H→ZZ*), allows 
• the sub-% measurement of rarer decay modes
• the ~5% measurement of the Higgs trilinear selfcoupling

• the huge dynamic range (eg pt(H) up to several TeV), which allows to 
• probe d>4 EFT operators up to scales of several TeV
• search for multi-TeV resonances decaying to H, or extensions of the 

Higgs sector

N100 = σ100 TeV × 30 ab–1

N14 = σ14 TeV × 3 ab–1

gg→H VBF WH ZH ttH HH

N100 24 x 109 2.1 x 109 4.6 x 108 3.3 x 108 9.6 x 108 3.6 x 107

N100/N14 180 170 100 110 530 390



• Hierarchy of production channels changes at large pT(H):
• σ(ttH) > σ(gg→H) above 800 GeV

• σ(VBF) > σ(gg→H) above 1800 GeV

H at large pT
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• Inclusive production, pT > 0 :
• largest overall rates
•most challenging experimentally:

• triggers, backgrounds, pile-up ⇒ low efficiency, large systematics

➡ det simulations challenging, likely unreliable ⇒ regime not studied so far

• pT ≳ 100 GeV :

• stat uncertainty ~few × 10–3 for H→4l, γγ, …
• improved S/B, realistic trigger thresholds, reduced pile-up effects ?
➡ current det sim and HL-LHC extrapolations more robust
➡ focus of FCC CDR Higgs studies so far 
➡ sweet-spot for precision measurements at the sub-% level

• pT ≳ TeV :

• stat uncertainty O(10%) up to 1.5 TeV (3 TeV) for H→4l, γγ (H→bb)
•new opportunities for reduction of syst uncertainties (TH and EXP)
•different hierarchy of production processes
• indirect sensitivity to BSM effects at large Q2 , complementary to that 

emerging from precision studies (eg decay BRs) at Q~mH
 27

Three kinematic regimes



• At LHC, S/B in the H→γγ channel is O( few % )
• At FCC, for pT(H)>300 GeV, S/B~1
• Potentially accurate probe of the H pt spectrum 

up to large pt 

gg→H→γγ at large pT
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pT,min 
(GeV) δstat

100 0.2%
400 0.5%
600 1%
1600 10%
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Normalize to BR(4l) from ee => 
sub-% precision for absolute 
couplings

Possible work: explore in more depth 
data-based techniques, to validate and 
then reduce the systematics in these ratio 
measurements, possibly moving to lower 
pt’s and higher stat
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Importance of standalone precise “ratios-of-BRs" measurements:
• independent of αS, mb, mc, Γinv systematics
• sensitive to BSM effects that typically influence BRs in different 

ways. Eg
BR(H→γγ)/BR(H→ZZ*)

loop-level tree-level

BR(H→μμ)/BR(H→ZZ*)
gauge coupling2nd gen’n Yukawa

BR(H→γγ)/BR(H→Zγ)
different EW charges in the loops of the two procs

BR(H→inv)/BR(H→γγ)
loop-level chargedtree-level neutral

Possible work: study impact of precise ratio measurements in the 
context of specific BSM models, set targets.  Any special opportunities?



t

t
H

t

t
Z

vs

- Identical production dynamics:

o correlated QCD corrections, correlated scale dependence
o correlated αS systematics

- mZ~mH ⇒ almost identical kinematic boundaries:
o correlated PDF systematics
o correlated mtop systematics

To the extent that the qqbar → tt Z/H contributions are subdominant:

+

For a given ytop, we expect σ(ttH)/σ(ttZ) 
to be predicted with great precision

t

t

H

t

t

Z
t

t

Z

+

+
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arXiv:1507.08169Top Yukawa coupling from σ(ttH)/σ(ttZ)

http://arxiv.org/abs/arXiv:1507.08169
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Analysis in arXiv:1507.08169 used boosted H/Z→bb decays (large stat, reduced 
combinatoric bg, correlated b-tagging efficiencies, …)
Reloaded with FCC-hh det sim in https://cds.cern.ch/record/2642471

- ttjj and ttbb bgs “measured” with data at mjj>200 with negligible δstat . Syst to be assessed 
for shape modeling under mH peak systematics
- ttZ kinematics validated with Z→leptons
- N(ttH)/N(ttZ) = 1.64 ± 0.01 (stat.) after perfect bg subtraction

http://arxiv.org/abs/arXiv:1507.08169
https://cds.cern.ch/record/2642471


Remarks
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• This measurement requires knowledge of ttZ EW coupling to % 
level => FCC-ee

• Further work to be done: 

• consolidate determination of bg shapes and impact on overall 
fit of ttH and ttZ components (H/Z→bb)

• explore different final states…

• Eg ttH(→γγ) / ttZ(→ee): doesn’t require large boost, much 
reduced bgs, correlated E scales and ID eff (e vs γ), …



HL-LHC FCC-ee FCC-hh
δΓH / ΓH (%) SM 1.3 tbd
δgHZZ / gHZZ (%) 1.5 0.17 tbd
δgHWW / gHWW (%) 1.7 0.43 tbd
δgHbb / gHbb (%) 3.7 0.61 tbd
δgHcc / gHcc (%) ~70 1.21 tbd
δgHgg / gHgg (%) 2.5 (gg->H) 1.01 tbd
δgHττ / gHττ (%) 1.9 0.74 tbd
δgHμμ / gHμμ (%) 4.3 9.0 0.65 (*)
δgHγγ / gHγγ (%) 1.8 3.9 0.4 (*)
δgHtt / gHtt (%) 3.4 ~10 (indirect) 0.95 (**)
δgHZγ / gHZγ (%) 9.8 – 0.9 (*)
δgHHH / gHHH (%) 50 ~44 (indirect) 5

BRexo (95%CL) BRinv < 2.5% < 1% BRinv < 0.025%
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Higgs couplings after FCC-ee / hh

* From BR ratios wrt B(H→ZZ*) @ FCC-ee
** From pp→ttH / pp→ttZ, using B(H→bb) and ttZ EW coupling @ FCC-ee

NB 
BR(H→Zγ,γγ) ~O(10–3) ⇒ O(107) evts for Δstat~%
BR(H→μμ) ~O(10–4) ⇒ O(108) evts for Δstat~%

pp collider is essential to beat the % 
target, since no proposed ee collider 
can produce more than O(106) H’s



Further work to do on decay-properties  measurements:
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• Apply to FCC-hh the various techniques proposed for the 
measurement of the total H width at the LHC: what is the 
precision reach? 

• Consider decays to other large-BR channels, bb, WW, ττ:

• unlikely to improve FCC-ee measurements, but …

• … can use to extend use of H as a tool (eg to reach larger 
pTH regions)

• Probes of Hcc: H→cc in boosted jets, exclusive H→J/ψ γ 
decays, …

• Couplings to lighter quarks (exclusive decays)

• Rare/forbidden decays (eμ, μτ, eτ, …, multibodies, …)



Higgs as a BSM probe: precision vs dynamic reach
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L = LSM +
1
⇤2

X

k

Ok + · · ·

O = | hf |L|ii |2 = OSM

⇥
1 + O(µ2

/⇤2) + · · ·
⇤

For H decays, or inclusive production, μ~O(v,mH)

�O ⇠
⇣

v

⇤

⌘2
⇠ 6%

✓
TeV
⇤

◆2

⇒ precision probes large Λ
e.g. δO=1% ⇒ Λ ~ 2.5 TeV

For H production off-shell or with large momentum transfer Q, μ~O(Q)

�O ⇠
✓

Q

⇤

◆2 ⇒ kinematic reach probes 

large Λ even if precision is low
e.g. δO=15% at Q=1 TeV ⇒ Λ~2.5 TeV



c2V cV 
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Example: high mass VV → HH

where
cV = gHVV /gSM

HVV

c2V = gHHVV /gSM
HHVV

⇒ (c2V − c2
V)SM

= 0{



WLWL scattering

large mWW

q

q

H0	+	Z0	

W±

W±
W±

W±

κW =
gHWW

gSM
HWW



(1)guaranteed deliverables: EW observables

The absolutely unique power of circular e+e–:

e+e– → Z e+e– → WW τ(←Z) b(←Z) c(←Z)

5 1012 108 3 1011 1.5 1012 1012

=> O(105) larger statistics than LEP at the Z peak and WW threshold



EW parameters 
@ FCC-ee
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*



Precision W physics with pp→tt[→Wb]
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ATLAS 2020:

LEP: 
BR(Wàτν)/BR(Wàµν) = 1.066 ± 0.025 
ATLAS: 
BR(Wàτν)/BR(Wàµν) = 0.992 ± 0.013

FCC-hh t W(←t) τ(←W←t)

1012 1012 1011

MLM @ SEARCH2016



(2)Direct discovery reach at high mass: the 
power of 100 TeV
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7

@14 TeV

@100 TeV
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s-channel resonances

FCC-hh reach ~ 6 x HL-LHC reach



Early phenomenology studies
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SUSY reach at 100 TeV

New detector performance studies
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Constraints on the coefficients of various EFT op’s from a global fit of (i) EW observables, (ii) Higgs couplings and (iii) EW+Higgs 
combined. Darker shades of each color indicate the results neglecting all SM theory uncertainties. 

Global EFT fits to EW and H observables at FCC-ee

100 TeV is the appropriate CoM energy to directly search for new physics appearing 
indirectly through precision EW and H measurements at the future ee collider



(3)The potential for yes/no answers to 
important questions



WIMP DM theoretical constraints
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For particles held in equilibrium by pair creation 
and annihilation processes, (χ χ ↔ SM) 

For a particle annihilating through processes 
which do not involve any larger mass scales:

Mwimp ≲ 2 TeV ( g
0.3 )

2
Ωwimp h2 ≲ 0.12



Disappearing charged track analyses
(at ~full pileup)
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K. Terashi, R. Sawada, M. Saito, and S. Asai, Search for WIMPs with disappearing track 
signatures at the FCC-hh, (Oct, 2018) . https://cds.cern.ch/record/2642474.

=> coverage beyond the upper limit of the thermal 
WIMP mass range for both higgsinos and winos !!

New detector performance studies

Mwimp ≲ 2 TeV ( g
0.3 )

2



In the SM this requires mH ≲ 80 GeV, else transition is a smooth 
crossover. 
Since mH = 125 GeV,  new physics, coupling to the Higgs and effective at scales 
O(TeV), must modify the Higgs potential to make this possible
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The nature of the EW phase transition

Strong 1st order phase transition ⇒〈ΦC〉> TC

Strong 1st order phase transition is required to induce and sustain the out of 
equilibrium generation of a baryon asymmetry during EW symmetry breaking 

- Probe higher-order terms of the Higgs potential (selfcouplings)
- Probe the existence of other particles coupled to the Higgs

〈ΦC〉

1st order 2nd order or cross-over



Combined constraints from precision Higgs 
measurements at FCC-ee and FCC-hh
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Parameter space scan for a singlet model extension 
of the Standard Model. The points indicate a first 
order phase transition. 

Direct detection of extra Higgs states at 
FCC-hh

(h2 ~ S,   h1 ~ H)
 51

Constraints on models with 1st order phase transition at the FCC



• Apparently, adding the self-coupling constraint does not add much in terms of 
exclusion power, wrt the HZZ coupling measurement …

• … BUT, should HZZ deviate from the SM, λHHH is necessary to break the 
degeneracy among all parameter sets leading to the same HZZ prediction

• The concept of “which experiment sets a better constraint on a given parameter” is 
a very limited comparison criterion, which looses value as we move from 
“setting limits” to “diagnosing observed discrepancies”

• Likewise, it’s often said that some observable sets better limits than others: “all 
known model predict deviations in X larger than deviations in Y, so we better 
focus on X”. But once X is observed to deviate, knowing the value of Y could 
be absolutely crucial ….

• Redundancy and complementarity of observables is of paramount importance 

Remarks
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Final remarks

• The study of the SM will not be complete until we clarify the nature of the 
Higgs mechanism and exhaust the exploration of phenomena at the TeV scale: 
many aspects are still obscure, many questions are still open.

• The combination of a versatile high-luminosity e+e– circular collider, with a 
follow-up pp collider in the 100 TeV range, appears like the ideal facility for 
the post-LHC era 

• complementary and synergetic precision studies of EW, Higgs and top properties
• energy reach to allow direct discoveries at the mass scales possibly revealed by the 

precision measurements
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