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Introduction



Strong interactions

I explain 99.9% of visible matter in the Universe

I elementary particles: quarks and gluons
I elementary fields: ψ(x) and Aµ(x)
I QCD Lagrangian

LQCD = 1
4 Tr Fµν(gs ,A)2 + ψ̄[γµ(∂µ + igsAµ) + m]ψ

I gs = O(1)  non-perturbative physics
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Path integral and lattice field theory

I path integral Feynman ’48

Z =
∫
DAµDψ̄Dψ exp

(
−
∫

d4x LQCD(x)
)

I discretize spacetime on a
lattice with spacing a

Wilson ’74

I Monte-Carlo algorithms to generate configurations
animation courtesy D. Leinweber

I 109-dimensional integrals  high-performance computing
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Isospin asymmetry



Isospin asymmetry: nuclei and neutron stars

I isospin asymmetry: nI ∝ nu − nd
creates p+-n asymmetry, excites π+

I proton to nucleon ratio in nuclei Z
A ≈ 0.4

but: ‘neutron skin’ near surface
I proton to nucleon ratio in interior of neutron stars Z

A ≈ 0.025
I role of pion condensation Migdal et al ’90
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https://inspirehep.net/literature/306293


Isospin asymmetry: cosmology

I early Universe characterized by charge neutrality nQ = 0,
(almost perfect) baryon symmetry nB = 0
but lepton number nL only weakly constrained by observations

Oldengott, Schwarz ’17

I weak equilibrium
d ↔ u e− ν̄e

large nL ↔ large d − u asymmetry Abuki, Brauner, Warringa ’09
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https://inspirehep.net/literature/1602926
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Pion condensation



Isospin chemical potential

I quark chemical potentials (3-flavor)

µu = µB
3 +2µQ

3 µd = µB
3 −

µQ
3 µs = µB

3 −
µQ
3 −µS

I pure isospin chemical potential

µu = µI µd = −µI µs = 0

corresponds to µQ = 2µI , µB = −µI , µS = −µI

I pion chemical potential µπ = µu − µd = 2µI

I isospin density nI = nu − nd
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Pion condensation

I QCD at low energies ≈ pions
chiral perturbation theory

I chemical potential for charged pions: µπ

at zero temperature µπ < mπ vacuum state
µπ ≥ mπ Bose-Einstein condensation

Son, Stephanov ’00

<u    d>=0γ
5

<u    d>=0γ
5π<     >=0

mπ

T

|µ  |I

A
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https://inspirehep.net/literature/527756


Bose-Einstein condensate

I accumulation of bosonic particles in lowest energy state

Anderson et al ’95 JILA-NIST/University of Colorado

I velocity distribution of Ru atoms at low temperature
→ peak at zero velocity (zero energy)
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https://science.sciencemag.org/content/269/5221/198


Symmetry breaking

I QCD with light quark matrix
M = /D + mud1 + µIγ0τ3 + iλγ5τ2

I chiral symmetry (flavor-nontrivial)
SU(2)V → U(1)τ3 → ∅

I spontaneously broken by a
pion condensate〈
ψ̄γ5τ1,2ψ

〉
=
〈
ūγ5d ± d̄γ5u

〉

I a Goldstone mode appears
I add small explicit breaking

I extrapolate results λ→ 0
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Dictionary

pion condensation

vacuum chiral symmetry breaking

pattern U(1)τ3 → ∅

SU(2)L ⊗ SU(2)R → SU(2)V

coset U(1)

SU(2)A

Goldstones 1

3

spontaneous
〈
ψ̄γ5τ2ψ

〉

〈
ψ̄ψ
〉

explicit = ∂ logZ/∂λ

= ∂ logZ/∂m

limit λ→ 0

m→ 0

I long story short: pion condensation 1/3 as challenging as the
chiral limit of the QCD vacuum
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Lattice simulations



On the lattice

I path integral

Z =
∫
DU e−Sg [U] ( det M` det Ms

)1/4

I light quark matrix

M` =
(
/D(µI) + m λγ5
−λγ5 /D(−µI) + m

)

I hermiticity relation

γ5τ1M`τ1γ5 = M†` → det M` = det(| /D(µI) + m|2 + λ2)

I staggered fermions: γ5 → η5

I early studies Kogut, Sinclair ’02 de Forcrand, Stephanov, Wenger ’07
Endrődi ’14 with unimproved actions

12 / 33

https://inspirehep.net/literature/583497
https://inspirehep.net/literature/767089
https://inspirehep.net/literature/1304925


On the lattice

I path integral

Z =
∫
DU e−Sg [U] ( det M` det Ms

)1/4

I light quark matrix

M` =
(
/D(µI) + m λγ5
−λγ5 /D(−µI) + m

)

I hermiticity relation

γ5τ1M`τ1γ5 = M†` → det M` = det(| /D(µI) + m|2 + λ2)

I staggered fermions: γ5 → η5

I early studies Kogut, Sinclair ’02 de Forcrand, Stephanov, Wenger ’07
Endrődi ’14 with unimproved actions

12 / 33

https://inspirehep.net/literature/583497
https://inspirehep.net/literature/767089
https://inspirehep.net/literature/1304925


On the lattice

I path integral

Z =
∫
DU e−Sg [U] ( det M` det Ms

)1/4

I light quark matrix

M` =
(
/D(µI) + m λγ5
−λγ5 /D(−µI) + m

)

I hermiticity relation

γ5τ1M`τ1γ5 = M†` → det M` = det(| /D(µI) + m|2 + λ2)

I staggered fermions: γ5 → η5

I early studies Kogut, Sinclair ’02 de Forcrand, Stephanov, Wenger ’07
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Pion condensate on the lattice

I measure full operator at nonzero λ (via noisy estimators)
Brandt, Endrődi, Schmalzbauer ’17

Σπ ∝
〈

TrM−1η5τ2
〉

<u    d>=0γ
5

<u    d>=0γ
5π<     >=0

mπ

T

|µ  |I

A

I seems to be consistent with chiral perturbation theory
I extrapolation λ→ 0 very steep

→ improvement (see later)
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Pion spectrum

I pion condensate carries electric charge (superconductor)
 electric charge eigenstates are not mass eigenstates

I pion correlator becomes a 2× 2 matrix
I after diagonalization, lighter eigenstate is the Goldstone boson

Endrődi, Theilig unpublished

〈
ūγ5d ± d̄γ5u

〉
π− π+

CHAPTER 4. RESULTS

4.1. The Pion Masses
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Figure 4.1.: Example of PP-correlators for λ = 0.001 and µI = 0.06.

At first, we will present our results for the mass of the two pions. As mentioned in Section
1.4 the charge and mass eigenstates are not the same in the condensed phase. For a finite pionic
source this is true for all values of the isospin chemical potential. Therefore, we will speak of
the light and the heavy pion in the following.
We obtained the masses by fitting the PP-correlation matrix according to (2.45). Figure 4.1
shows an example for the PP-correlation matrix in a logarithmic scale. Here the errorbars are
smaller than the marker size and thus, not visible. We also plotted the fit function. To obtain
χ2/(#DOF) ≤ 1, we had to neglect some data points. The denominator is the number of
degrees of freedom.
We will now discuss the shown correlation matrix but the statements are true for all values of
µI and λ. First, one notes that the diagonals are not symmetric. This is because the positively
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Figure 4.4.: Comparison: Lattice vs. χPT for the light pion.

In this section we will compare our results for the masses with the predictions of chiral
perturbation theory presented in [29]. The relevant formulas can be found in appendix A.2.
Figure 4.4 shows the comparison for the light pion. The lattice data matches the χPT results
very well, in particular for the smallest λ values. The extrapolated mass shows the expected
linear decrease until the phase transition occurs. However, in the condensed phase the mass
does not tend to zero and still shows a slight increase, which could be a remnant of the behavior
seen at finite λ.
The comparison with the χPT predictions for the heavy pion mass is shown in Figure 4.5.
Here the results are only in good agreement for small values of the isospin chemical potential.
For higher values the masses obtained from the lattice are larger, especially in the condensed
phase. In this regime the slope is also significantly higher. However, the bump slightly before
the phase transition is captured rather well.

55

comparison to χPT Kogut et al ’00
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Figure 4.4 shows the comparison for the light pion. The lattice data matches the χPT results
very well, in particular for the smallest λ values. The extrapolated mass shows the expected
linear decrease until the phase transition occurs. However, in the condensed phase the mass
does not tend to zero and still shows a slight increase, which could be a remnant of the behavior
seen at finite λ.
The comparison with the χPT predictions for the heavy pion mass is shown in Figure 4.5.
Here the results are only in good agreement for small values of the isospin chemical potential.
For higher values the masses obtained from the lattice are larger, especially in the condensed
phase. In this regime the slope is also significantly higher. However, the bump slightly before
the phase transition is captured rather well.
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λ → 0 improvement



Singular value representation

I pion condensate operator

Σπ = ∂

∂λ
log det(| /D(µI) + m|2 + λ2) = Tr 2λ

| /D(µI) + m|2 + λ2

I singular values

| /D(µI) + m|2 ψi = ξ2
i ψi

I spectral representation Brandt, Endrődi, Schmalzbauer ’17

Σπ = T
V
∑

i

2λ
ξ2

i + λ2
V→∞−−−−→

∫
dξ ρ(ξ) 2λ

ξ2 + λ2
λ→0−−−→ πρ(0)

first derived for m = 0 in Kanazawa, Wettig, Yamamoto ’11

I compare to Banks-Casher-relation at µI = 0

15 / 33

https://inspirehep.net/literature/1644793
https://inspirehep.net/literature/943168


Singular value representation

I pion condensate operator

Σπ = ∂

∂λ
log det(| /D(µI) + m|2 + λ2) = Tr 2λ

| /D(µI) + m|2 + λ2

I singular values

| /D(µI) + m|2 ψi = ξ2
i ψi

I spectral representation Brandt, Endrődi, Schmalzbauer ’17
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Dictionary

pion condensation vacuum chiral symmetry breaking

pattern U(1)τ3 → ∅ SU(2)L ⊗ SU(2)R → SU(2)V

coset U(1) SU(2)A

Goldstones 1 3

spontaneous
〈
ψ̄γ5τ2ψ

〉 〈
ψ̄ψ
〉

explicit = ∂ logZ/∂λ = ∂ logZ/∂m

limit λ→ 0 m→ 0

Banks-Casher ρ| /D(µI )+m|2(0) ρ /D(0)
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Singular value density

I integrated spectral density

N(ξ) =
∫ ξ

0
dξ′ρ(ξ′), ρ(0) = lim

ξ→0
N(ξ)/ξ

I compare ρ(0) to velocity distribution around zero

I Bose-Einstein condensation!
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Comparison between old and new methods

I improvement is crucial for reliable λ→ 0 extrapolation
Brandt, Endrődi, Schmalzbauer ’17

Σπ = T
V
∂ logZ
∂λ Σψ̄ψ = T

V
∂ logZ
∂mud
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Results: phase diagram



Condensates

I pion and chiral condensate after λ→ 0 extrapolation

I read off chiral crossover Tpc(µI) and pion condensation
boundary µI,c(T )
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Order of the transition

I volume scaling of order parameter shows typical sharpening
I collapse according to O(2) critical exponents Ejiri et al ’09

I indications for a second order phase transition at µI = mπ/2,
in the O(2) universality class
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Continuum extrapolations

I compare (pseudo)critical temperatures for different lattice
spacings a = 1/(NtT )

I take continuum limit a→ 0 (Nt →∞)

21 / 33



Phase diagram

I meeting point of chiral crossover and pion condensation
boundary: pseudo-triple point

at Tpt = 151(7) MeV, µI,pt = 70(5) MeV

Brandt, Endrődi, Schmalzbauer ’17

Brandt, Endrődi ’18
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Results: BCS phase



BCS superconductor

I perturbation theory at µI →∞ indicates attractive ū − d
interaction in pseudoscalar channel Son, Stephanov ’00

I 〈ūγ5d〉 6= 0 but deconfined: effective degrees of freedom are
Cooper pairs and not pions

I BEC-BCS transition expected to be an analytic crossover

I similar to µB →∞ expectations – can we detect this phase
here?

I so far only indirect approaches involving:
scaling of isospin density (two-color QCD) Cotter et al. ’12
behavior of constituent quark mass Adhikari et al. ’18
conformality of EoS Carignano et al. ’16
. . .
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Deconfinement within BEC

I Polyakov loop shows steady rise as µI grows

I contour lines insensitive to pion condensation boundary

I BEC + deconfinement ⇒ BCS at high µI and intermediate T
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BCS gap ∆

I high-µI effective theory predicts Kanazawa, Wettig, Yamamoto ’12

∆2 = 2π3

9 ρ(0)

ρ(ν) is spectral density of complex eigenvalues /Dψ = νψ

I we measured low end of spectrum at high µI
Brandt, Cuteri, Endrődi, Schmalzbauer ’19

I preliminary results for ρ(mud + i0) at the physical mass
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Preferred phase diagram

hadronic phase

quark-gluon plasma

BCS phase

BEC phase

26 / 33



Preferred phase diagram

hadronic phase

quark-gluon plasma

BCS phase

BEC phase

26 / 33



Results: equation of state



Equation of state

I equilibrium description of matter

ε(p)

relevant for:
I neutron star physics (TOV equations)
I cosmology, evolution of early Universe (Friedmann equation)
I heavy-ion collision phenomenology (charge fluctuations)

I thermodynamic identities

p = T
V logZ, s = ∂p

∂T , nI = ∂p
∂µI

, ε = −p + Ts + µInI
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Equation of state on the lattice

I integral method to calculate differences

nI = T
V
∂ logZ
∂µI

, p(T , µI)− p(T , 0) =
∫ µI

0
dµ′I nI(µ′I)

I results at T ≈ 0 on one lattice spacing
Brandt, Endrődi, Fraga, Hippert, Schaffner-Bielich, Schmalzbauer ’18
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I interaction measure I = ε− 3p, compared to a hadron
resonance gas model including pion-pion interactions

Vovchenko, Brandt, Cuteri, Endrődi, Hajkarim, Schaffner-Bielich ’20

T = 0

Effective mass model

Lattice QCD
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Equation of state on the lattice

I ∆I = I(T , µI)− I(T , 0) on two lattice spacings
Vovchenko, Brandt, Cuteri, Endrődi, Hajkarim, Schaffner-Bielich ’20
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Cosmological implications



Cosmic trajectories

I conservation equations for isentropic expansion
nB
s = b, nQ

s = 0, nLα

s = lα (α ∈ {e, µ, τ})

I parameters: temperature plus chemical potentials

T , µB, µQ, µLα

I experimental constraints Planck coll. ’15 Oldengott, Schwarz ’17

b = (8.60± 0.06) · 10−11, |le + lµ + lτ | < 0.012

(the individual lα may have opposite signs)
I complete EoS (neglecting QED interactions)

p = pQCD + pleptons + pphotons
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Cosmic trajectories

I cosmic trajectory enters BEC phase for lepton asymmetries
allowed by observations

Vovchenko, Brandt, Cuteri, Endrődi, Hajkarim, Schaffner-Bielich ’20

I keeping le + lµ + lτ = 0, le − lµ is not so important; the
relevant condition is

|le + lµ| & 0.1
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Vovchenko, Brandt, Cuteri, Endrődi, Hajkarim, Schaffner-Bielich ’20

I keeping le + lµ + lτ = 0, le − lµ is not so important; the
relevant condition is

|le + lµ| & 0.1

� ��� ��� ��� ���
�

��

��

��

��

���

���

���

���

���

� ��
� µ
����

��
� ��
� µ
���
���� ��

� µ
��
���

�

��
��

��
�

µ�������

� ��
� µ��

��

��
	��
	��	���������

���� ���� ���� ���� ���� ��� ��� ��� ��� ��� ���
�

��

��

	�


�

���

���

���

�	�

�	�����	��
�	���	��������	�

π + �������	�
���
��
��

��
�

��+�µ


	����	µ
�������
	��	µ�	τ����

π
− ���

��
��
	�


���

31 / 33

https://inspirehep.net/literature/1815329


Signatures of the condensed phase

I relic density of primordial gravitational waves is enhanced with
respect to amplitude at le + lµ = 0

I fraction of primordial black holes with mass below one solar
mass is enhanced
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Summary



Summary

I BEC ↔ ρ| /D(µI )+m|2(0) > 0

singular values useful for λ→ 0
improvement of observables

I phase diagram and EoS for
nonzero isospin asymmetry

I pions may condense in early
Universe if lepton asymmetries
are sizeable
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