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The Borexino
detector @
Gran Sasso

Active
volume 280
tons of liquid
scintillator

Detection principle
Vy+€e >V, +€

Elastic scattering off the
electrons of the scintillator
threshold at ~ 60 keV
(electron energy)

Data taking started in May

2007
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Standard Solar Model : “engine” of the Sun, solar
neutrinos production and spectrum predictions
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The pp chain investigation as basis of the quest for CNO

neutrinos
l T 17T ‘ T T 17T | T T T 7T T T T FT F 3 LI | T T T ‘ T 17T | T T
10k —¥ =" Latest pp chain published Borexino Solar
g pp s - o - pile-up . . :
~ 5 _zgﬁgi ——ext bkg neutrino spectroscopy: simultaneous fit of all
. | Be — Kr ,
S  Tolal it pvalie=0:7 the low energy neutrino sola.r rgtes
S A CNO . pp, 'Be, pep, 8B and upper limit on hep
2107 pep B + upper limit forCNO
e S, | | — multivariate Monte Carlo fit
2102 U T )
e = ‘
“10_3: | , i But not yet an evidence and a measure
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1)
Why a CNO v measurement /
is so difficult?

— 2) No distinguishable spectral features
]- shape
3) Correlation with 21Bj and pepV’s )

Nature, Volume 562,

pp. 505-510 (2018)

Nature, Volume 512, Issue 7515, pp. 383-386 (2014) “Summa” of the Borexino pp
Physical Review D, Volume 100, Issue 8, id.082004 (2019) results

PHYSICAL REVIEW D 101, 062001 (2020)
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The Borexino quest for CNO neutrinos after the complete pp
chain measurement

CNO v — pep v— 219Bi correlations

E — o  Borexino data
2 1i "% e CNO v expected spectrum
S EWeu % i ® 210R;
g il v"““"ﬂ‘f'\mw;.._ Iwﬁm"ﬁw«wﬂ&\ﬂw ooy Bi spectrum
X107 g ity ° pep vspectrum
g waﬂ
;:31':)'2 = L
[ ~ The spectral fit returns only the
= L sum of CNO and 210Bj, if both
. e are left free
400 600 800 1000 1200 1400 1600
Energy (keV)
Note also the low rates: Thanks to Borexino unprecedented purity
* R(CNO V)eypected ~ 3-5¢pd/100ton | @ 95% C.L 22Th< 5.7 109g/g 8U<9.4 10%°g/g
e R(219Bj) ~ 10 cpd/100ton other backgrounds less relevant apart the
* R(pep)~ 2.5 cpd/100ton cosmogenic 11C

The pep flux can be constrained at the 1.4 % level through the solar luminosity constraint
coupled to SSM predictions on the pp to pep rate ratio and the most recent oscillation
parameters - J. Bergstrom et al., JHEP, 2016:132, 2016
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210Bj independent determination from 219Po

Degeneracy in the fit removable with a constraint on 210Bj

Independent estimation of 210Bij rate

If the 210Bi is in equilibrium with 210Po, an
independent measurement of the latter
decay rate gives directly the 210Bi one

7600 (secular equilibrium scenario)

=
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210 B~ |210g; B~ , 210 o, 206
210Bj-210Pg analysis: Pb - £ . .
ysis: 32y 7.23d 199.1d
Extract the 210Bi decay rate in Borexino
through the study of the 210Po decay rate
Nh
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e 7 I B B B R R B B N
10E —CONO v 210Pg js “easier” to identify wrt 210Bi:
=% | 1 ~— " Bi . “ )
= h 0\ 210pg, * Monoenergetic decay - “gaussian” peak
8 E'w H\”"ﬁ“\% %memmuwv * o decay - pulse shape discrimination
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Energy (keV)

— The quest for CNO is turned into the quest of 1°Bi through 21°Po !
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Hurdle - diffusion and convection of 21%Po from the
vessel surface

210po moves from the vessel surface into the scintillator and within the
scintillator itself — getting moved by diffusion and temperature
induced convection

Fiducial

Pure exponential decay (t,,=138.4 days) to
the intrinsic value is perturbed by the
presence of strong convective motions
(purple blobs), caused mostly the seasonal
and man-made temperature change in the

Polonium from IV .
experimental Hall

Inner Vessel migrating to FV

p(r) sinh(r/A) Diffusion length in PC
atp(‘r) — DVQP(T) — E — p(?") — QUT 1= Dtp, = 20 cm

Even tiny amount of 21°Pb — source of 219Po - present on vessel surface are relevant at the
Borexino extreme radiopurity level

without taking compensating measures convection is dominant

2021 March 25
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Example of the external temperature impact on the ?1°Po in the
scintillator

19w I-.I 1‘;
e

Temperature probes

TE2: 3 m from ground

| == TE5: on top of the
Water Tank

-
%

From this event the
implementations
from 2014

14-w ]
insulation layer l _
around the tank e, WA

e active control

Temperature [°C]

—
n
T

system December 16" 2013
— stable 200¢
north south gradient _
to stratify the 2 150} _ Striking effect of
scintillator and stop = ™ the temperature
the liquid motion & wsan  discontinuity on
And later onin 2019 " the 210pg
e HallC ! evolution
Stablllzatlon T Iﬁl{]l - Il{ll{]l II I15IUI - IE{I]OI II Ilé{]l T

t [d]
210pg count rate evolution vs. time in the Fiducial Volume
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Multiple approaches to monitor,
understand, and suppress the temperature

Thermal insulation & variations
Active Gradient
Stabilization System Temperature monitoring probes Fluid dynamical simulation

a/!/ I-.«=~ W .

o " |

Very good agreement with
measured temperatures

| = = \
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® 507° 125 - —
® 2060 B} S
e
-26.4° 15
® -50.7° 06/04/2015 10/06/2015 14/08/2015 18/10/2015 22/12/2015
® e7.1° T T T time
54 temperature probes 6/04 10/06 14/08 18/10 2212

2015 2015 2015 2015 2015
« Double layer of mineral wool (thermal conductivity down to 0.03 W/m/K) & Active Gradient Stabilization
System (2014-2016)

e Temperature Probes (2014-2015) V. di Marcello et al., NIM A 964, id. 163801
e Fluid dynamical simulations

» Hall C Temperature Stabilization (2019)

Enduring effort over the past six years
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Insulation of the Water
Tank

. The Water Tank covered starting from the floor, all around
the circumference, up to the total height including the
organ pipes

. The thickness of the insulation double layer is 200mm

. The first layer in contact with the tank is a naked roll of
rock wool

. The second layer of insulation is a roll with reinforced grid
and aluminum outside

. The total insulation layer kept in place using proper pins
glued to the Water Tank wall using a low rad glue

. 7-8 pins installed for square meter of insulation
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e
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The upper part of installation accomplished using proper
scaffolding
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Instrumentation of the detector for thermal
stabilization and monitoring

Borexino Water Tank after the completion Distribution of temperature

of the thermal insulation layer probes around and inside the
Borexino detector

2021 March 25
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Top-Bottom gradient and active temperature
control system

Controlled
temperature
water flowing
in copper
serpentines

6th band: copper coils under insulation;

Key to ensuring a static liquid condition was the establishment of a stable top-
bottom temperature gradient

The bottom temperature was established by the rock temperature

The water in the serpentines controls the top temperature — top-bottom gradient
stabilized

2021 March 25 G. Ranucci - First detection of solar neutrinos from CNO cycle with Borexino
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Temperature Active Control System setup

\

#12,~18 mlong, d =14 mm
copper coils;

Multilayered pipe for tranfer line;
Manifold with 12 input/output;
Circulation pump (3 m3/h);
Heater (3 kW);

# 6 temperature probes for wt temp
monitor;

# 6 temperature probes for water
outlet temp monitor;

X Temperature controller;
Massflowmeter.

B o W K

P

>

X Slow Control software _“"‘ UUUUU& ._

14
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Hall C temperature control system
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It monitors and regulates the inlet air

from the air duct to Hall C and can

work in direct and feedback mode

e Switched on in non feedback mode
beginning of October 2019

e Passed to feedback mode (feedback
signals from the central external
sensors of the Water Tank/Hall C)
after one month

2021 March 25
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Temperature (°C)

Temperature evolution from the probes

1 - Insulation start
2 - WT recirc. pump off

s-mutationcomeleted 00| (GlOb Al view of stabilization from 2015

— ]
o | : 4 - Active system on
e ]

o
o

—-——

A

w

———-bh

w

16 5 - Hall C heater on
155
15
145 Probes sensing
14
= the outer buffer
13
12.5
12
11.5
%
10.5 1 - Hall C TCS start-up
: - 2 - Hall € TCS contral mode 2
10 ] 1 - . 6.5 T T
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B e e s e ]
Snapshot of the last year " u —
;u.m p— P — E i : ES
Achieved excellent temperature - —

12.0 4 ' —NT|
: 57 |

stability with the establishment T ——— —
of a clear temperature gradient s ==

] I

10.0 H— S S ”rs > — NE— ¥ - —
1an-201% Mar-2019 May-2019  Jul-2019  Sep-2019 Nov-2019%  jan-2020

Time

Probes resolution 0.07 °C
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Further global view of the recent temperature
evolution

1 - Hall C TCS start-up 1 - Hall C TCS start-up
2 - Hall C TCS control mode 2 2 - Hall C TCS control made 2
T
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Figure 9: Air temperature profile around Borexino. The or-  Figure 10: Water tank surface temperature evolution.
ange curve is the measured temperature of the Hall C inlet
air.
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Figure 11: Re-entrant buffer temperature evolution.

Inside the outer buffer

From November 2019 achieved the best temperature stability ever
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A 2D detailed view - Polonium data spatial mapping vs. time
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Crucial
observation:
“Low Polonium
Field” 20 tons
size from which
we can infer
the intrinsic
210pg and
hence the 219Bj
- agreement

20 with

v i simulations

140

cpd/100t

120

Avg Temperaturf§[C]

.j._‘
1‘"'1'. u -'LIJL

J

/

2018»”04!24 2014/09/20 2016/02/16

Convective . : .
condition before ~ Quiet situation
insulation after insulation

Stabilization measures were very
effective at reducing the 21°Po motion

2021 March 25

[&
2017/07/14

2018/12/10 2020/05/07 see next slides
date [davl

1. Beginning of the Insulation Program

2. Turning off the water recirculation
system in the Water Tank

3. Start of the active temperature control
system operations

4. Change of the active control set points
5. Installation and commissioning of the
Hall C temperature control system.

G. Ranucci - First detection of solar neutrinos from CNO cycle with Borexino 18



Low Polonium Field inside the scintillator

4

500 600

Three-dimensional view of the 21°Po activity inside the entire Inner Vessel - the
innermost blueish region contains the LPoF (black grid) - the white grid is the
software-defined Fiducial Volume

2021 March 25
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Prediction of 21°Po volumetric pattern — Fluid dynamical simulation
with the insulation cover of the Water Tank and the measured

temperature profiles
210pg rate vs. time

within the vessel
(initial condition
and final solution
displayed)

taking into account
a surface
distribution on the
wall of the vessel.
The simulation
describes the
migration due to
the residual

convective motion _ _
post-insulation Initial uniform End of the simulated period

Predicted more residual “turbulence ” (and hence Polonium) in the bottom and
the dynamical formation of a “minimum” 21°Po region above the equator, unaffected by
the 219Po influx from the surface
2021 March 25 G. Ranucci - First detection of solar neutrinos from CNO cycle with Borexino 20



210Bj upper limit from 21%Po data

20

« 210Po (alpha) events are fitted to find 0 %
the minimum 219Po rate in the sub- 1 :
region 0 §

e Low Polonium Field (LPoF) at around
80cm above equator, but it move
over time very slowly

5
£ = X%+ y3(m?)
Distribution of 21°Po events in the blindly aligned data-set
- - 100 =

« “Aligning” the data:

1. Fit paraboloid/spline over e
monthly data

2. Extract z-position (z0) over time € "

3. Create “aligned” dataset where 0
each data point is shifted with B
the z0 from the previous month. _ E*
This reduces bias in the final

corrected Po-210 rate (cpd/100

05—

result. =2 04/2016 11/2016 03/2017 08/2017 12.-’20_:_;905}2018 10!201-8-02:‘2019 08/2019 01/2020
Reconstructed central position of LPoF
2021 March 25 over time for different methods
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Fitting the aligned “1°Po data

Paraboloid Spline fit:

1.00 0.75 0.0 0.25 0.00-0,25-0,50-0,75-1,00

120
110
100
30
80
70
60
50

2 (z—2) Account for complexity along the z
Bpo = Rmine - (1 t 3t —) +2Xis  axis with a cubic spline model
using a Bayesian nested sampling
algorithm

Both methods agree within systematics:

Rmin(de/100t) ‘ Oft | Omass ‘ O binning | 0 2198; homog. ‘ 03 leak ‘ O Total
1.5 1 0.88 | 0.36 | 0.31 | seenextslides | 0.30 | see nextslides

2021 March 25
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Events / (dayx100t x 1.00 npe)

210Bj spatial uniformity systematics

210Bj constraint based on 20t region analysis v z LPoF

— CNO analysis: implicitly extrapolating the
210Bj constraint from the LPoF to the larger FV
mass (70t)

Precision level we state 21°Bi uniformity in
the FV?” - systematic to the 21°Bi spatial

_2logy e K, 210p,
-v('Be) ~V(CNO) -v(pep)

10° g

Analyzing B spatial distribution of events in a large

Energy energy range (0.554 MeV < E < 0.904 MeV)
.. region

o
w
LU

._
o
T

- ~75% neutrinos
_____ ML - ~15% 210B;j
N A - ~10% 1C and 8°Kr

,_.
=

s s 0 a0 a0 s Ss e Rate variations are attributed to #1°Bi events

Rec. energy [NHitsNorm] (conservative approach)
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210Bj spatial uniformity systematics

Radial Banalysis | + [__Angular p analysis |

Radial shells Spherical harmonics decomposition

YA

0.51 cpd/100t 0.59 cpd/100t

Overall ?19Bj spatial uniformity systematics: 0.78 cpd/100t

2021 March 25
G. Ranucci - First detection of solar neutrinos from CNO cycle with Borexino
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210Bj spatial uniformity systematics
angular and radial derivations

J= J
=] [l

]
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= ]
|II III|III
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. i

P rate [cpd/100t]

= o6 C L band
— 1o C.L. band
—— Data

— Fit

28 IIII[:]IIIIijzlII'I:]:3III[Iqu-lI{I]5III‘I:]BIII[I:]?I-II{IJSIII'I:]QIIII.1

Yolume fraction

%]
]

30

[s=]

Linear fit performed over the variable r/r,
where r,is the radius of the sphere
surrounding the analysis fiducial volume
data are found compatible with a uniform
distribution within 0.51 cpd/100t

2021 March 25

Angular Power Spectra

Mollweide Projection

—— White Noise

2g
mm lo
Data

~l
=]

[=)]
(=]

un
o

=
f==]

I |
0 5 10 15 20
Events in the ROI

AL+ 1)C

bJ L
o o

—
=

o

0 2 4 B 8 10 12 14 16
!

Angular spectral density of observed B events
in the 21%Bi ROI (black points) compared with
10000 uniform event distributions from Monte
Carlo simulations at one (dark pink) and two o
CL (pink)

data are found compatible with uniform
distribution within the uncertainty of 0.59
cpd/100t - inset: angular distribution of the B
rate in the %10Bi
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Simulation of the 21°Pb/219Bi uniformity

Imitial conditions 12 days 1 month

- %

3 months & mnmhs 1 yea.r

Evolution of an initial non uniform %°Pb/%1%Bi distribution pre-
insulation and with the experimental temperature distributions at
that time — uniformity reached in 1 year in the entire inner vessel

2021 March 25
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210Po and 219Bi final numerical assessment

210py, +—-—>ﬁ_ 210B;4 —~—>/3_ 210py 2 _y 206Dy, (stable) Basis of the approach
(23y) (5d) (138d)

210pg rate inferred from the Low Polonium Field with all errors

Rmin(de/100t) ‘ Oft | Omass ‘ O binning | 0 2198; homog. ‘ 03 leak ‘ O Total
1.5 1088 036 | 031 | 078 | 030 | 13

The 219Po evaluated rate still possibly contaminated with residual 21°Po from
the vessel surface — upper limit to the rate of %1%Bi

s | R(21°Bi) < 11.5 + 1.3 cpd/100t | «(—

Sought constraint essential to break the degeneracy with CNO —>
Outcome of the relentless years-long effort to stabilize the detector
and understand the 2%Po behavior in the Inner Vessel

2021 March 25
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MV fit CNO-v analysis
Three distributions in the multivariate fit

TFC-subtracted spectrum
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— Total fit: p-value = 0.3
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Radial distribution of events
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T IIIII‘:Ill

TFC-tagged spectrum
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—— Best Fit - y*NDF = 77 / 61
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CNO-v analysis: Phase-Ill MV fit

TFC-subtracted spectrum

= | ! | : | l | d | | | i |
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©10 ... 210 ... other bkgs 210
©  F — Total fit: p-value = 0.3 ©
~ H ~
> i
o 107 E° 510?
E = £
° o o
2 B 2
2 T e - N =
— 10 = =~ 10
2} = @
[ — =
[oh] — @
= | >
L w

1 L e ey . . 1

500 1000 1500 2000 2500
Energy [keV]

Multivariate fit (0.32-2.64 MeV) pep-v rate constrained

TFC-tagged spectrum
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July ‘16 — February 20 210Bj rate constrained - ?1°Bi-?'°Po tagging

CNO rate

- free to vary

Maximization of a binned Other v and bkg rates - free to vary

likelihood 3 distributions

simultaneously:

e Reconstructed energy for TFC-
tagged and TFC-subtracted

datasets (11C identification) asymmetric

Result

CNO best fit 7.2 cpd/100t
confidence interval -1.7 +2.9 cpd/100t

. Radial position (stat only) asymmetry <> 21%Bj upper limit
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Systematic sources and final CNO-v result

fit with un-distorted PDFs

k “pp) ‘DLSEC’TELGM h g

ENERGY

1) Fit conditions 4
- negligible

2) 1C spectrum
deformation by noise cuts

Monte Carlo - simulate distorted datasets,

Look abt the width
-» Grel sigmasfeet

Al 5‘:‘3"""“335

vipp)

~iks
fit with pdf. -

without distortion

L]

v(Be)
A|T i ‘w_
099 38

. 4)29Bj spectral
shape (difft~18%)

3) Energy response function: energy scale (~0.23%),

non-uniformity (~0.28%), non-linearity (~0.4%) from
detector calibration

Final syst:

=

0.5 +0.6 Final CNO result 7.2 (-1.7 +3.0) cpd/100t stat + sys

cpd/100t corresponding to a flux of neutrinos on

Earth of 7.0 (-1.9 +2.9)x108cm™2s™!
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Determination of the q, discovery test statistic from
the likelihood with and without the CNO signal

Fraction

10

1
10~
10-2
10~
10~

10~

Significance of CNO-v detection

Likelihood ratio test

G. Cowan et al., Eur.
Phys. J. C, 71:1554,2011

13.8 millions pseudo-datasets

[ ] Expected @ 7.2 cpa/100t with deformed PDFs and no
[ statseys CNO to determine the q
I reference distribution

— data

/’—\\ q,(data) from the real dataset
‘From the MC distributions p-value of g, (grey
curve) with respect to g, (data) (black line) —

correspondingly significance greater than 5 o at
99% CL

Ho e |Consistent with 5.10 through the log-likelihood
Y Ifrom the fit folded with uncertainties

No CNO hypothesis disfavored at 5 ¢

With these results Borexino marks the
first detection ever of CNO solar neutrinos
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Result corroborated by a simplified Counting
AnaIyS|S F %?O 800 400 500 Tﬁ?o 700 80 900

— CNO-v — "Be-v and °B-v
. . . . i oo pEpYy external bkgs
We perform a counting analysis in a Region of ¢ S oherbgs

Interest (ROI) determined maximizing a S/B Figure =

of Merit and using an analytical modeling of the
detector response.

—
(=)
o

Events / 5N

—_
o
T T 1T

Number of expected events
Species (S)  Events  Fracton  of 219Bj and pep neutrinos in

1k

N 823 + 28.7 the ROI is calculated B R — =0
20Bi  261.5+29.6 031 according to the same oan: 5,637
RMS: 1.599
bounds used in the MV fit 5 oorb assan .
»("Be) 868 +£26  0.10 2 ook o7 - 0011
c 57958 007 For the other species we § oo L RER e
0.04F
Others 156 £16  0.02 use a reference response oosk
25  5935£304 0.7 model of the detector 0.02)-
N-3,S  2205+418 029 0ot
0 | PRI

2 4 6 8 10 12 14
cpd/100t

Systematics are obtained as the width of the distribution of the CNO rate after
varying parameters on 10* Toy-MC realizations where we determine the number of
CNO events by subtracting all the other species from the total events in the ROI.

Rycnoy = (5.6 £ 1.6)cpd/100t [~ 3.5 0] NeLREEELL:

The multivariate fit fully exploits all the information contained in the signal
data and substantially enhances the CNO significance detection
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Compendium of the results

800+ i i i ----- Fit w/o Systematics | 0.06
Room for | : g — Fit w/ Systematics '
CNO i i : HZ 68% C.I. 0.05
! ! ! LZ 68% C.1. s
600 i i i Borexino 68% C.1. E
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- . | g
400¢ : : 10.03 =
: : ; 3
I I 1 . o
| ! : 710.02 ©
200} N |
4 L . 10.01
0 . . TP I = _ 0.00
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Events in the ROI CNO-v Rate [cpd/100t]

The enduring Borexino quest of the CNO neutrinos has
finally produced the first observation of the signal

2021 March 25 G. Ranucci - First detection of solar neutrinos from CNO cycle with Borexino 33



Conclusion

The undeterred, several years long effort to thermally
stabilize the detector has resulted in the first detection of
CNO neutrinos by Borexino

Significance of the detection 5 ¢

With this outcome Borexino has completely unraveled the
two processes powering the Sun

the pp Chain and the CNO Cycle
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