Why is chemical freezeout at the chiral crossover temperature?

Sushant Kumar Singh (sushantsk@vecc.gov.in) Variable Energy Cyclotron Centre, Kolkata

Talk based on Sourendu Gupta, Jajati K Nayak & SKS, PRD 103, 054023 (2021)

- A deconfined state of quarks and gluons (popularly called as QGP) is formed when normal nuclear/hadronic matter ($\rho_0 \approx 0.17 \text{ fm}^{-3}$) is compressed to high densities ($\gtrsim 5 \rho_0$) or heated to high temperatures ($\sim 10^{12}$ K).
- The phase change from QGP to hadrons is a smooth crossover at $\mu_B = 0$ characterized by breaking of approx chiral symmetry.
- Chiral crossover temperature $T_{CO} \approx 155$ MeV at $\mu_B = 0$.

Quark-Gluon Plasma in Laboratory

- When heavy nuclei like Au, Pb are collided at relativistic energies, a locally equilibrated fireball of quarks and gluons is formed. Hadrons emitted from the fireball are measured experimentally.
- Large internal pressure makes the fireball expand and cool. Typical timescale $\tau_{exp} \sim 10-20$ fm.
- The hadrons may further interact changing the yields and momentum distribution of individual species. Let τ_R denotes the typical timescale over which yields change.
- If $\tau_R < \tau_{exp}$, then chemical equilibrium is maintained.
- If $\tau_R \gtrsim \tau_{exp}$, then system falls out-of-chemical equilibrium. Yields do not change significantly. Chemical Freeze Out occurs at temperature T_{CFO} and chemical potential $\mu_{B,CFO}$.

Hadron Resonance Gas model

- Number and identity of hadrons (yields) are described by HRG.
- Non-interacting gas of hadrons and resonances. The grand canonical partition function is

$$\ln Z = \sum_{i=1}^{N} \ln Z_{i} \quad , \quad \ln Z_{i} = \pm \frac{Vg_{i}}{2\pi^{2}} \int dp \ p^{2} \ln \left[1 \pm \exp[-(E_{i} - \mu_{i})/T]\right]$$

and

$$N_i = -T \frac{\partial}{\partial \mu_i} \ln Z = \frac{g_i V}{2\pi^2} \int_0^\infty \frac{p^2 dp}{\exp[(E_i - \mu_i)/T] \pm 1} \quad , \quad \mu_i = B_i \mu_B + S_i \mu_S + Q_i \mu_Q$$

The yields have been analyzed using the HRG model (NPA 772 (2006) 167-199 and Nature 561, 321-330 (2018)). Mean yields have been fitted fairly successfully. Fitting provides freezeout parameters *T_{CFO}* and μ_{B,CFO}.

$T_{CO} \approx T_{CFO}$: a coincidence ?

Ref : A. Andronic et al, Nature 561, 321-330(2018)

Setting-up the Solution

- The hadron yields provide information (*i.e.* T_{CFO} and $\mu_{B,CFO}$) only on the last scattering surface.
- To show that $T_{CO} \approx T_{CFO}$, we need to show
 - Chemical relaxation time in the chiral symmetric phase is small. This has been done in PRL 122, 142301 (2019). Typical timescale $\sim 1-2.5$ fm.
 - Chemical relaxation time in the chiral broken phase is large.
- In order to understand FO, we concentrate on broken phase and calculate τ_R of a hadron gas which is not very far from equilibrium.
- Set-up a transport theory for hadrons.
- Choice of hadrons ? Lightest : π , Strangeness: K, Flavor symmetry: η . Gives full octet of pseudoscalar mesons.
- For $\mu_B = 0$, $n_p^{\rm eq}/n_\pi^{\rm eq} \sim 0.01$ near T_{CO} . Neglect baryons and higher mass hadrons.

Kinetic Theory of Hadrons

- To calculate τ_R , sufficent to consider a fluid at rest.
- System is dilute (Nucl.Phys.B 321 (1989) 387). Hence, use of Classical Boltzmann equation. Also 2 → 2 reactions.
- In order to understand freeze out, sufficient to calculate close to equilibrium. Hence, use of linear approximation *i.e.* for *i*th species $n_i = n_i^{eq} + \delta n_i$ and keep terms linear in δn_i .
- Equation determining the approach towards equilibrium

$$\frac{d\delta n_{a}}{dt} = -\sum_{r} \langle \sigma_{r} v_{ab} \rangle \left(n_{a}^{\rm eq} \delta n_{b} + n_{b}^{\rm eq} \delta n_{a} \right) + \sum_{\bar{r}} \langle \sigma_{\bar{r}} v_{cd} \rangle \left(n_{c}^{\rm eq} \delta n_{d} + n_{d}^{\rm eq} \delta n_{c} \right)$$

where $\langle \cdot \rangle \equiv$ averaging over the thermal distribution, σ_r denotes cross-section of reactions where *a* is in initial state, $\sigma_{\bar{r}}$ denotes cross-section of reactions where *a* is in final state.

Role of Symmetries

• Isospin symmetry : since mass diff. b/w isospin partners $\Delta m \ll T_{CO}$, a reasonable approximation

$$\pi \ : \ (\pi^+,\pi^0,\pi^-) \quad , \quad K \ : \ (K^+,K^0) \quad , \quad ar{K} \ : \ (ar{K}^0,K^-)$$

Instead of 8, only 4 independent densities *i.e.* δn_{π} , δn_{K} , $\delta n_{\bar{K}}$, δn_{η} . • Strangeness : $S = n_{\bar{K}} - n_{K}$ conserved

- Accidental conservation : $N = n_{\pi} + n_{K} + n_{\bar{K}} + n_{\eta}$ conserved.
- S and N conservation can be taken into account through following parametrization of δn_i 's

$$\delta n_{\pi} = h_{\pi}, \ \delta n_{\eta} = h_{\eta}, \ \delta n_{K} = \delta n_{\bar{K}} = -(h_{\pi} + h_{\eta})/2$$

so that

$$rac{d}{dt}\left(egin{array}{c} h_{\pi}\\ h_{\eta}\end{array}
ight)=\mathbb{C}\left(egin{array}{c} h_{\pi}\\ h_{\eta}\end{array}
ight) \quad, ext{ elements of }\mathbb{C} ext{ have dimension }[t]^{-1}$$

Cross-sections from ChPT

- Octet of pseudoscalar mesons : (π⁺, π⁻, π⁰, K⁺, K⁰, K⁰, K⁻, η) forms the Goldstone bosons of chiral symmetry breaking of QCD (SU(3)_L × SU(3)_R → SU(3)_V).
- Chiral symmetry constrains the interactions among the pseudo-scalar mesons. At leading order

$$\mathcal{L} = rac{f_0^2}{4} \mathrm{Tr} \left[\partial_\mu U^\dagger \partial^\mu U + M_0 (U + U^\dagger)
ight]$$

where $U = \exp(i\sqrt{2}\Phi/f_0)$ and Φ is a SU(3) matrix containing the 8 meson fields and $M_0 = \operatorname{diag}(M_{0\pi}^2, M_{0\pi}^2, 2M_{0\kappa}^2 - M_{0\pi}^2)$.

- NLO ChPT scattering-amplitudes have been computed in Ref. PRD65, 054009 (2002). Lagrangian contains 8 LECs.
- Unitarity $(SS^{\dagger} = \mathbb{I})$ enforced in different (I, J) channels through Inverse Amplitude Method. At every mass threshold, number of states increases by one. So dimension of *S*-matrix increases by one. So discontinuities in amplitudes at thresholds.

Some features of the Calculation

• Calculation involves 12 input parameters :

 $m_{\pi}, m_K, m_{\eta}, f_{\pi}, L_1, \ldots, L_8$

- Error uncertainties due to L_i's only. Errors in others negligible.
- Dynamical generation of resonances in Unitarized ChPT. Scalar and vector resonances till 1.2 GeV are reproduced. Need not include resonances as explicit degrees of freedom.

• No UV cutoff needed as the amplitudes are unitarized.

Results - I

Figure: Relaxation time of normal modes as a function of the temperature. Ref: PRD 103, 054023 (2021)

- The slow mode has a relaxation time of 100 fm at 150 MeV and 1000 fm at 100 MeV.
- The fast mode has a relaxation time of 10 fm at 150 MeV and 100 fm at 100 MeV.

Results - II

Figure: Angle between normal modes and pion direction shown as a function of the temperature. Ref: PRD 103, 054023 (2021)

- The slow mode is dominantly π 's.
- The fast mode is dominantly η 's.

Earlier studies in this direction

• Relaxation time at high temperatures underestimated due to unphysical inputs.

Goldstone Physics

- Goldstone bosons are non-interacting. This means in the limit of exact chiral symmetry π , K, η do not interact.
- Explicit breaking of symmetry gives rise to interaction proportional to symmetry breaking parameter. Here the symmetry breaking parameters are masses.
- Fast mode being η and slow mode being π suggests Goldstone behaviour.
- Best check should be to vary the masses and see whether $m \to 0$ gives $\tau_R \to \infty$. Unfortunately this cannot be done as LECs are fixed.
- Another check will be to remove η from the system. The relaxation time must increase. This we have checked and results consistent with Goldstone physics.

Naturalness

- Define the dimensionless ratio $\Pi = \tau(T) n^{eq}(m, T) m^2 / (4f_{\pi}^4)$.
- For slow mode ($m = m_{\pi}$ and $\tau = \tau_s$): Π is of order unity (changes from 1 to 2 in the temperature range 100-150 MeV).
- With our values of τ_s , we find that $1/\tau_s \approx \sigma n^{eq}(m_{\pi}, T)$ with $\sigma = m_{\pi}^2/(4f_{\pi}^4) \approx 25$ mb.
- The result agrees with kinetic theory arguments !!!
- This simple result is only obtained when the complexity of NLO ChPT and meson resonances are included.
- For fast mode ($m = m_{\eta}$ and $\tau = \tau_f$): Π is of order unity (changes from 2/3 to 4/3 in the temperature range 100-150 MeV).

Is $T_{CFO} \approx T_{CO}$?

- Slow mode relaxation time is 100 fm near T_{CO} much larger that τ_{exp} typically 10-20 fm. Meson gas cannot remain in chemical equilibrium. This together with "short equilibration time in chiral symmetric phase" suggests $T_{CFO} \approx T_{CO}$.
- Inclusion of baryons will modify the slow mode relaxation time as

$$\frac{1}{\tau_s'} \approx \sigma_{\pi\pi} n_{\pi}^{\rm eq} + \sigma_{\pi N} n_N^{\rm eq}$$

At low energies, $\sigma_{\pi N}/\sigma_{\pi \pi} \simeq 2$ and whereas $n_N^{\rm eq}/n_{\pi}^{\rm eq}$ varies between 0.001 and 0.01 when T changes from 100 to 150 MeV. Therefore, the effect of adding baryons will be a few percent.

• Future calculation to include baryons are being undertaken but our results and arguments give a strong indication that we understand the basic physics of chemical freezeout.

Conclusions

- Constructed a kinetic theory of yields using pseudoscalar mesons and unitarized cross sections from NLO ChPT. This takes care of the fact that pseudoscalar mesons are pseudo-Goldstone bosons of chiral symmetry breaking in QCD.
- Neglected baryons. Although πN cross sections are similar to $\pi \pi$ cross sections but densities are 2 to 3 orders of magnitude smaller.
- Interactions are completely fixed by chiral symmetry but due to low densities relaxation times are large.
- Clear physical reason why fireball cannot be in equilibrium after chiral symmetry breaking.

Thank You !!!