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QCD chiral crossover

@ A deconfined state of quarks and gluons (popularly called as QGP) is
formed when normal nuclear/hadronic matter (pg ~ 0.17 fm~3) is
compressed to high densities (2 5 po) or heated to high temperatures
(~ 10'2 K).

@ The phase change from QGP to hadrons is a smooth crossover at
ug = 0 characterized by breaking of approx chiral symmetry.

@ Chiral crossover temperature T¢co = 155 MeV at ug = 0.



Quark-Gluon Plasma in Laboratory

@ When heavy nuclei like Au, Pb are collided at relativistic energies, a
locally equilibrated fireball of quarks and gluons is formed. Hadrons
emitted from the fireball are measured experimentally.

@ Large internal pressure makes the fireball expand and cool. Typical
timescale Tep ~ 10 — 20 fm.

@ The hadrons may further interact changing the yields and momentum
distribution of individual species. Let 7r denotes the typical timescale
over which yields change.

@ If TR < Texp, then chemical equilibrium is maintained.

0 If TR 2 Texp, then system falls out-of-chemical equilibrium. Yields do
not change significantly. Chemical Freeze Out occurs at temperature
Tcro and chemical potential g cro.



Hadron Resonance Gas model

@ Number and identity of hadrons (yields) are described by HRG.

@ Non-interacting gas of hadrons and resonances. The grand canonical
partition function is
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@ The yields have been analyzed using the HRG model (NPA 772
(2006) 167-199 and Nature 561, 321-330 (2018)). Mean yields have
been fitted fairly successfully. Fitting provides freezeout parameters

Tcro and g cro-



Tco~ Tcro : a coincidence ?
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Setting-up the Solution

@ The hadron yields provide information (i.e. Tcro and pg,cro) only
on the last scattering surface.

@ To show that Tcp ~ Tcro, we need to show
o Chemical relaxation time in the chiral symmetric phase is small. This
has been done in PRL 122, 142301 (2019). Typical timescale ~ 1 —2.5
fm.
o Chemical relaxation time in the chiral broken phase is large.

@ In order to understand FO, we concentrate on broken phase and
calculate T of a hadron gas which is not very far from equilibrium.

@ Set-up a transport theory for hadrons.

@ Choice of hadrons 7 Lightest : 7, Strangeness: K, Flavor symmetry:
7. Gives full octet of pseudoscalar mesons.

e For ug =0, np?/n ~ 0.01 near Tco. Neglect baryons and higher
mass hadrons.



Kinetic Theory of Hadrons

@ To calculate 7g, sufficent to consider a fluid at rest.

@ System is dilute (Nucl.Phys.B 321 (1989) 387). Hence, use of
Classical Boltzmann equation. Also 2 — 2 reactions.

@ In order to understand freeze out, sufficent to calculate close to
equilibrium. Hence, use of linear approximation i.e. for i*" species
ni = n;1+ &n; and keep terms linear in dn;.

o Equation determining the approach towards equilibrium
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where (-) = averaging over the thermal distribution, o, denotes
cross-section of reactions where a is in initial state, o7 denotes
cross-section of reactions where a is in final state.



Role of Symmetries

@ Isospin symmetry : since mass diff. b/w isospin partners Am < Tco,
a reasonable approximation

7 (T, 7%77) , K (KNK% , K : (K%K")

Instead of 8, only 4 independent densities i.e. dny, dnk, dng, dny.
@ Strangeness : S = niz — nk conserved
@ Accidental conservation : N = n; + nk + ng + n, conserved.

@ S and N conservation can be taken into account through following
parametrization of dn;'s

dng = hy, ony = hy, dng = dng = —(he + hy))/2
so that

da
dt
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Cross-sections from ChPT

@ Octet of pseudoscalar mesons : (7t, 7=, 7% K* K° K° K=, n) forms
the Goldstone bosons of chiral symmetry breaking of QCD
(SU(3)L x SU(3)r — SU(3)v).

@ Chiral symmetry constrains the interactions among the pseudo-scalar
mesons. At leading order

2
L= %Tr [0,UT0"U + Mo(U + U]

where U = exp(iv/2®/f;) and & is a SU(3) matrix containing the 8 meson
fields and My = diag(M3,., M3, 2M3, — M3).

@ NLO ChPT scattering-amplitudes have been computed in Ref. PRD65,
054009 (2002). Lagrangian contains 8 LECs.

@ Unitarity (SST =1) enforced in different (/,J) channels through Inverse
Amplitude Method. At every mass threshold, number of states increases by
one. So dimension of S-matrix increases by one. So discontinuities in
amplitudes at thresholds.



Some features of the Calculation

@ Calculation involves 12 input parameters :
Mz, Mg, My, fﬂ'; le"-aLS
@ Error uncertainties due to L;'s only. Errors in others negligible.
@ Dynamical generation of resonances in Unitarized ChPT. Scalar and

vector resonances till 1.2 GeV are reproduced. Need not include
resonances as explicit degrees of freedom.
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@ No UV cutoff needed as the amplitudes are unitarized.



Results - |
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Figure: Relaxation time of normal modes as a function of the
temperature. Ref: PRD 103, 054023 (2021)

@ The slow mode has a relaxation time of 100 fm at 150 MeV and 1000 fm at
100 MeV.

@ The fast mode has a relaxation time of 10 fm at 150 MeV and 100 fm at
100 MeV.



Results - 1l
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Figure: Angle between normal modes and pion direction shown as a
function of the temperature. Ref: PRD 103, 054023 (2021)

@ The slow mode is dominantly 7's.
@ The fast mode is dominantly 7's.



Earlier studies in this direction
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@ Relaxation time at high temperatures underestimated due to
unphysical inputs.



Goldstone Physics

@ Goldstone bosons are non-interacting. This means in the limit of
exact chiral symmetry 7w, K, 1 do not interact.

@ Explicit breaking of symmetry gives rise to interaction proportional to
symmetry breaking parameter. Here the symmetry breaking
parameters are masses.

@ Fast mode being 1 and slow mode being 7 suggests Goldstone
behaviour.

@ Best check should be to vary the masses and see whether m — 0
gives TR — oo. Unfortunately this cannot be done as LECs are fixed.

@ Another check will be to remove 7 from the system. The relaxation
time must increase. This we have checked and results consistent with
Goldstone physics.



Naturalness

o Define the dimensionless ratio M = 7(T)n®4(m, T)m?/(4£*).

@ For slow mode (m = m; and 7 = 75): I is of order unity (changes
from 1 to 2 in the temperature range 100-150 MeV).

e With our values of 75, we find that 1/75 ~ on®i(m,, T) with
o= m2/(4f}) ~ 25 mb.

@ The result agrees with kinetic theory arguments !!!

@ This simple result is only obtained when the complexity of NLO
ChPT and meson resonances are included.

e For fast mode (m = m,, and 7 = 7¢): I is of order unity (changes
from 2/3 to 4/3 in the temperature range 100-150 MeV).



Is Tcro =~ Tco?

@ Slow mode relaxation time is 100 fm near Tco much larger that 7exp
typically 10-20 fm. Meson gas cannot remain in chemical equilibrium.
This together with "short equilibration time in chiral symmetric
phase” suggests Tcro ~ Tco.

@ Inclusion of baryons will modify the slow mode relaxation time as

— R Opr 3+ ornny
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At low energies, oxn/0rr =~ 2 and whereas njy!/nS% varies between
0.001 and 0.01 when T changes from 100 to 150 MeV. Therefore, the
effect of adding baryons will be a few percent.

@ Future calculation to include baryons are being undertaken but our
results and arguments give a strong indication that we understand the
basic physics of chemical freezeout.



Conclusions

@ Constructed a kinetic theory of yields using pseudoscalar mesons and
unitarized cross sections from NLO ChPT. This takes care of the fact
that pseudoscalar mesons are pseudo-Goldstone bosons of chiral
symmetry breaking in QCD.

@ Neglected baryons. Although N cross sections are similar to 77
cross sections but densities are 2 to 3 orders of magnitude smaller.

@ Interactions are completely fixed by chiral symmetry but due to low
densities relaxation times are large.

@ Clear physical reason why fireball cannot be in equilibrium after chiral
symmetry breaking.



Thank You !l



