

Lesya Shchutska École Polytechnique Fédérale de Lausanne

June 4, 2021

# **Explaining BSM phenomena**

Our questions with no answer so far:

- what is dark matter?
- where has the antimatter gone?
- how do neutrinos acquire a mass?

What is the energy scale of New Physics?

• not the one we are focusing on currently, as e.g. for dark matter:



# Light dark matter



- weakly interacting dark matter is heavily constrained
- Lee-Weinberg bound  $m_{DM} > 2 \text{ GeV}$ 
  - can be lifted by introducing new light boson mediators
  - DM-SM coupling reduced, DM annihilation cross section increased
- "mediators" as "portals" to a "dark sector"
  - feebly interacting ("FIPs") and low mass

# **Example: dark photon framework**



• dark photon  $\stackrel{m_{\chi}[\text{GeV}]}{A'}$  as a mediator, and DM particles  $\chi$ :

- $\alpha_D$  a coupling constant between A' and  $\chi$
- $\epsilon$  mixing parameter between  $A^\prime$  and SM photon
- $m_\chi$  and  $m_{A'}$  the masses of two new particles

• parameter 
$$y = \epsilon^2 \alpha_D \left( \frac{m_{\chi}}{m_{A'}} \right)$$

• in the  $(m_{A'}, y)$  plane, the relic abundance curves are invariant under a change of the the arXiv:1909.08632 arXiv:1806.05219

# Man-made Light dark matter



- imperative: small or no background
- $E^{\text{miss}}$  or  $p^{\text{miss}}$  techniques sensitive to  $\epsilon^2$ , others to  $\epsilon^4$



#### SND-LHC: Scattering and Neutrino Detector at the LHC



A newly proposed, compact and stand-alone experiment designed to:

- perform measurements with neutrinos
- and search for new feebly interacting particles,

produced at the LHC, in an unexplored range of  $7.2 < \eta < 8.6$ 

- Letter of intent: LHCC-I-037, 27 Aug 2020
- Technical proposal: LHCC-P-016, 22 Jan 2021
- Experiment approval: Grey Book database, 17 Mar 2021
- Experiment website: http://snd-lhc.web.cern.ch/
- First phase: operation in Run 3 to collect  $150 \text{ fb}^{-1}$

SND@LHC is currently a collaboration of 180 members from 20 institutes

# Location: (LEP) Injection Tunnel 18, TI18

~480 m away from the ATLAS IP: shielding from the IP provided by 100 m rock
charged particles are deflected by the LHC magnets



### Detector integration in the tunnel



# **Detector design**

Hybrid detector designed for:

- identification and measurement of the three neutrino flavours,  $\nu_e$ ,  $\nu_\mu$ ,  $\nu_\tau$
- detection of feebly interacting particles,  $\chi$
- Veto plane to tag incoming muons
  - scintillating bars
- **O Target region** for  $\nu$  or  $\chi$  scattering
  - emulsion cloud chambers (emulsion and tungsten)
  - SciFi (scintillating fibres) planes
- **6** Muon system for produced  $\mu$  ID
  - iron walls interleaved with scintillating bars



### **Detector key numbers**

- target: 830 kg of tungsten
- angular acceptance:  $7.2 < \eta < 8.6$ , off-axis location
- electromagnetic calorimeter:  $\sim 84X_0$ , sampling every  $17X_0$
- hadronic calorimeter:  $\sim 10\lambda$  (muon system alone  $8\lambda$ ), sampling every  $\lambda$



### Target and vertex detector: Emulsion



Emulsion cloud chamber (ECC) technique for the target: tungsten layers (1mm thick) alternated with nuclear emulsion films

Submicrometric position resolution for event topology reconstruction:





# $5 xy 390 \times 390 \text{mm}^2$ SciFi planes used for:

- tracking and combining information from ECC
- active layers of sampling calorimeter for energy measurement
- timing information for global event reconstruction and ToF from the IP1 measurement



# SciFi planes



SiPM array for light detection:  $60 \mu m$  spatial resolution

# Muon stations (+veto plane)



### Event reconstruction: first phase



#### Using information from electronic detectors (veto, SciFi, muon system):

- identify neutral scattered candidates
- identify muons in the final state
- identify electrons/hadrons
- reconstruct EM and hadronic showers
- measure neutrino/ $\chi$  energy

### Event reconstruction: second phase

#### Using nuclear emulsions:



- identify EM showers
- $\nu/\chi$  vertex reconstruction and secondary search
- match with candidates from electronic detectors
- complement SciFi for EM energy measurement

# Neutrino physics in Run 3

#### $\nu$ production with DPMJET3, propagation with FLUKA, interaction with GENIE:

|                  | Neutrinos in              | n acceptance         | CC neutrino               | interactions | NC neutrino                | interactions |
|------------------|---------------------------|----------------------|---------------------------|--------------|----------------------------|--------------|
| Flavour          | $\langle E \rangle [GeV]$ | Yield                | $\langle E \rangle [GeV]$ | Yield        | $\langle E \rangle ~[GeV]$ | Yield        |
| $ u_{\mu}$       | 145                       | $2.1 	imes 10^{12}$  | 450                       | 730          | 480                        | 220          |
| $\bar{ u}_{\mu}$ | 145                       | $1.8 	imes 10^{12}$  | 485                       | 290          | 480                        | 110          |
| $\nu_e$          | 395                       | $2.6 	imes 10^{11}$  | 760                       | 235          | 720                        | 70           |
| $\bar{ u}_e$     | 405                       | $2.8 	imes 10^{11}$  | 680                       | 120          | 720                        | 44           |
| $\nu_{	au}$      | 415                       | $1.5 	imes 10^{10}$  | 740                       | 14           | 740                        | 4            |
| $\bar{ u}_{	au}$ | 380                       | $1.7 \times 10^{10}$ | 740                       | 6            | 740                        | 2            |
| TOT              |                           | $4.5\times10^{12}$   |                           | 1395         |                            | 450          |

#### Neutrino physics programme detailed in the technical proposal LHCC-P-016:

| Measurement                             | Uncertainty |      | Signal/Background |
|-----------------------------------------|-------------|------|-------------------|
|                                         | Stat.       | Sys. |                   |
| $pp \rightarrow \nu_e X$ cross-section  | 5%          | 15%  |                   |
| Charmed hadron yield                    | 5%          | 35%  |                   |
| $\nu_e/\nu_{\tau}$ ratio for LFU test   | 30%         | 22%  |                   |
| $\nu_e/\nu_\mu$ ratio for LFU test      | 10%         | 10%  |                   |
| NC/CC ratio                             | 5%          | 10%  |                   |
| Observation of high-energy $\nu_{\tau}$ |             |      | 4                 |



• DM scattering in the target volume:  $pp \rightarrow V + X, V \rightarrow \chi \chi$ 

- elastic: background-free signature with one charged track  $\chi + p/e \rightarrow \chi + p/e$
- inelastic:  $\chi + p/n \rightarrow \chi + X$  signature is similar to  $\nu$  NC
  - $\implies$  exploit kinematical features, look for an excess in NC events
- visible mediator decay within the detector volume:  $V \rightarrow q\bar{q}$ :
  - look for an isolated decay vertex
  - exploit time of flight from the IP1 (480 m)

# Scattering off atomic electrons (150 fb<sup>-1</sup>)

Vector portal in a minimal SM extension, with the production of a dark photon  $\mathcal{A}'$ :

$$\mathcal{L}_{\mathcal{A}'} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{m^2_{\mathcal{A}'}}{2} A'^{\mu} A'_{\mu} - \frac{1}{2} \epsilon F'_{\mu\nu} F^{\mu\nu} \quad (1)$$

- $\mathcal{A}' \to \chi \chi$ , with  $\chi + e \to \chi + e$  in the target
- study with full simulation: 0 SM background expected
- sensitivity dominated by small couplings: DM scattering acquires additional ε<sup>2</sup> in the yield ⇒ SND@LHC is an ε<sup>4</sup> experiment
- NA64 is an  $\epsilon^2$  experiment  $\implies$  has better sensitivity



### Scattering off nucleons: elastic signature



- the ratio of cross sections  $\sigma_{\rm el}/\sigma_{\rm inel}$  drops with the mediator mass
- for SM neutrinos, mediator (Z) is heavy ⇒ most of events are inelastic, only O(1) of elastic events is expected at SND@LHC during Run 3
- elastic scattering off protons is background-free



## Scattering off nucleons: inelastic signature

- deep inelastic scattering (DIS) off nucleons is important for heavier mediators
- these inelastic DM scattering events compete with much more numerous neutrino inelastic events
- the total flux of neutrinos in the far-forward direction is unknown will be measured by the SND@LHC
- however, SM predicts the ratio  $N_{NC}/N_{CC} \approx 0.33$
- envisioned precision for the  $N_{NC}/N_{CC}$  measurement with SND@LHC is 10%
- $\implies$  if LDM contributes only to NC events an increase of NC/CC is a good signature!
- at  $2\sigma$ , around 100 LDM events are required in the inelastic signature

- with coupling to new physics ε, SND@LHC is ε<sup>4</sup> experiment
- there are many other  $\epsilon^2$  experiments:
  - NA64 for  $m \lesssim 1~{\rm GeV}$
  - BaBar and Belle for  $m \lesssim 8 \ {\rm GeV}$



But there are no bounds from these experiments if mediator does not interact with electrons and photons

## Leptophobic portal

Leptophobic portal is currently less constrained:

$$\mathcal{L}_{\text{leptophob}} = -g_B V^{\mu} J^B_{\mu} + g_B V^{\mu} (\partial_{\mu} \chi^{\dagger} \chi + \chi^{\dagger} \partial_{\mu} \chi), \quad J^B_{\mu} = \frac{1}{3} \sum_{q} \bar{q} \gamma_{\mu} q \qquad (2)$$

Current bounds are from 2005.03594:

- invisible  $\pi, K, \eta$  decays at NA62, CB and E949
- CDF monojet in 2004.10996

Constraint from  $B \rightarrow K+$ invisible at LHCb is model-dependent, 1707.01503



### Leptophobic portal: DM production at the LHC

DM  $\chi$  is produced in decays of mediator V:



Similarly to dark photon, the mediator is produced:

- by proton bremsstrahlung:  $p + p \rightarrow V + X$
- in decays of unflavored mesons  $\pi, \eta: \pi \to V + \gamma, \quad \eta \to V + \gamma$
- **(3)** by Drell-Yan process:  $q + \bar{q} \rightarrow V + X$

#### Leptophobic portal: DM production at the LHC



- the dominant production channel for  $m_V < m_{\pi}$  is decays of pions,
- for masses  $m_{\phi} < m_V < 2~{
  m GeV}$  is the proton bremsstrahlung
- at larger masses, the Drell-Yan channel dominates

### Studies with full simulation

#### elastic scattering:

|        | $\chi  p 	o \chi  p$  |            |  |  |
|--------|-----------------------|------------|--|--|
|        | Selection eff.        | Background |  |  |
| NC DIS | $2.8 	imes 10^{-3}$   | 1.26       |  |  |
| NC RES | $1.7 {	imes} 10^{-1}$ | 0.48       |  |  |

### **2** inelastic scattering:



kinematic selection alone does not suppress SM bkg
sensitivity is based on 3σ signal excess over SM bkg



Excluded: results by CDF, BES, E949 and BNL; Projection for DUNE is shown as well

## **Including decay signatures**

- apart from scattering, it is possible to probe decays of mediators V at SND@LHC
- decays should be distinguished from CC and NC scatterings of neutrinos
- $\bullet\,$  decays into a lepton pair,  $V \to \ell \ell,$  is a background-free signature
- decays into at least one hadron, such as  $V \to \pi \ell, \pi \pi$ , differ from neutrino events: a very few tracks with a very large energy
- decays into neutral pions and photons look like a high-energy cascade of pairs of highly collimated photons

These decay channels are the main for neutrino, scalar and vector portals!

### **Decay signatures: HNLs**



• sensitivity is estimated for

- $\mathcal{L} = 150 \text{ fb}^{-1}$ ,  $l_{\text{det}} = 0.5 \text{ m}$  (solid line) and
- $\mathcal{L} = 3000 \text{ fb}^{-1}$ ,  $l_{det} = 1.25 \text{ m}$  (dashed line)

• sensitivity of FASER (solid) and FASER2 (dashed) from PBC report is shown

### Decay signatures: dark scalars and dark photons



For dark scalars and dark photons, the sensitivity is limited:

• these particles, even if being produced in sufficient amounts, decay before reaching the detector

# Summary and outlook

- SND@LHC experiment is approved and is quickly advancing with construction
- commissioning and energy calibration for electronic detectors in September
- physics studies for SM and NP searches programme are ongoing



• phenomenological estimates sensitivity to FIPs summarized arXiv:2104.09688