Advanced Antenna Systems for 21st Century Satellite Communications Payloads

Dr. Sudhakar Rao, FIEEE Distinguished Lecturer, IEEE APS Technical Fellow, Electronics & Payloads Directorate Northrop Grumman Aerospace Systems Redondo Beach, CA 90278, USA

2016

"Approved for Public Release; NGAS 14-1018, 5/29/14"

AGENDA

- Introduction to Satellite Communications
- Phased Arrays
- Contoured Beam Antennas
- Multi-beam & Multi-Band Antennas
- Reconfigurable Beam Antennas
- Hybrid Antennas
- PIM & Multipaction
- Conclusions

*S. Rao, L. Shafai, & S. Sharma, "Handbook of Reflector Antennas and Feed Systems", Vol. 3, Artech House Publishers, June 2013

** S. Rao, "Advanced Antenna Technologies for Satellite Communications Payloads", IEEE Trans. AP, Special Issue, Apr 2015

IEEE Membership

- The IEEE is the largest professional society in the world. At present, there are more than 460,000 members in about 175 countries.
- The IEEE and its predecessors date to 1884.
- The IEEE produces 30 percent of the world's published literature in electrical engineering, computers and control technology.
- There are more that 1,200 student branches.
- There are 38 technical Societies + 10 Divisions & 10 Regions

GEO Satellites

Actual geostationary orbit use (2001)

Designated Satellite Services (ITU)

- Aeronautical Mobile Satellite Service (AMSS)
- Aeronautical Radio Determination Satellite Services (ARDSS)
- Amateur Satellite Service
- >Broadcasting Satellite Service (BSS)
- Earth-Exploration Satellite Service (EESS)
- Fixed Satellite Service (FSS)
- Inter-Satellite Service (ISS)
- ➤Land Mobile Satellite Service (LMSS)
- Maritime Mobile Satellite Service (MMSS)
- Meteorological Satellite Services
- Mobile Satellite Service (MSS)
- Radio Determination Satellite Services (RDSS)
- Space Operations Service
- Space Research Service
- Standard Frequency and Time Signal Satellite Service

Personal Communication Services (PCS)

Antenna Directivity, Gain, Polarization

Isotropic radiator

- A point source that radiates equally in all directions

> Directivity

 A measure in dB of an antenna's ability to transmit or receive energy in a given direction compared to an isotropic radiator.

Isotropic Radiator

Gain= Directivity – Antenna Losses

-2

Spacecraft Antenna Types

> High Gain Antennas (30 dBi to 70 dBi)

- Reflector Antennas (widely used)
- Lens Antennas (hardly used)
 - * Dielectric Lenses: ESD issues
 - * Waveguide Lenses: Narrow Bandwidth
- Array Antennas (occasionally used)
- Medium Gain Antennas (15 dBi to 25 dBi)
 Global coverage horns
- Low Gain Antennas (0 dBi to 12 dBi)
 - Biconical Antennas
 - Waveguides
 - Horn Antennas

Phased Array Antennas: Lattice

Y			• Fle	xibility	
\uparrow	Y ↑ _		• Lo	w-Profile	e
00000	000	Φ=30°	• Lo	wer Effic	ciency
00000	0000		• Hig	iher Cos	st
0000	00.00	X <u>Ele</u>	m Spaci	ng Vs Sca	n Angle
		Θ _{sm}	Θ _G	d _s /λ	d _h /λ
00000	0000	5.0	6.0	5.22	6.02
00000	$\overline{)}$	8.7	9.7	3.13	3.61
00000	000	15.0	16.0	1.87	2.16
1-1	(b)	30.0	32.0	0.97	1.12
(a)		45.0	47.0	0.70	0.80
Square Lattice	Hexagonal Lattice	60.0	65.0	0.56	0.66
equare Eather		70.0	75.0	0.52	0.61
d 1	d_h 1.1547	80.0	85.0	0.50	0.58
$\frac{u_s}{1} \leq \frac{1}{\sin \theta + \sin \theta}$	$\overline{\lambda_h} \ge \overline{\sin\theta_{sm} + \sin\theta_G}$			1	1
$\lambda_h \sin\theta_{sm} + \sin\theta_G$	_			SQUARE	HEX
Ease of implementation	Fewer number of elen	nents (15	o% less)		
Better scan loss	More scan loss				
Choose element spacing based or	n highest frequency & max scan a	ingle			

- Choose element design based on bandwidth, polarization, & scan reqts
- Prepare detailed loss budget (amp/phase errors, quantization, element loss, thermal, impl margin etc.)
- Evaluate array gain at lowest frequency
- Evaluate array front-end losses based on highest freq

Phased Arrays with Flexible Beams

Array Design

- Number of Elements: $N = 10^{0.1(D_A D_e)}$ •
- D_e is the element gain at bore-sight
- Array Directivity:

Peak Gain

(over cov.)

 $D_A = G_p + L_S + SL + T_L + I_m$

Insertion Loss

Scan Angle (degrees)	Element Spacing in λ at Highest Freq. *		Number of Elements for 1000 λ**2 at Highest Freq		
	Square Lattice	Hexagonal	Square Lattice	Hexagonal	
		Lattice		Lattice	
80	0.50	0.58	4000	3464	
70	0.52	0.60	3698	3208	
60	0.55	0.64	3306	2863	
50	0.61	0.70	2687	2327	
40	0.71	0.82	1984	1718	
30	0.88	1.02	1291	1118	
20	1.19	1.37	706	611	

ScanLoss

(elem.Patt

roll-off)

Taper Loss

* Assumes closest grating lobe location as 10 deg. larger than the maximum scan angle

Element Spacing vs Grating Lobes

L-Band Reconfigurable Array for GPS Next

Wide-Band Arrays (Multi-Octave Bandwidths)

RIDGE ELEMENT ARRAY

Low-Profile Wide-Scan Arrays

Low-Profile Wide-Scan Phased Array **Performance**

Origami Based Reconfigurable Array Unit Cell

Reflector Antennas

Consists of two major assemblies

- reflector assembly
- feed assembly -

Reflector assembly: provides required gain, determines coverage shape, scan loss, beam squint etc. Comprises reflector, thermal paint/cover, deployment boom mechanisms/gimbals, pointing error - key design drivers: surface accuracy, loss, X-pol, thermal stability

Feed assembly (horn + OMT + polarizer + filters/diplexers +TCs +W/G Interfaces to repeater): provides proper illumination on the reflector, dictates bandwidth, polarization, X-pol isolation, filtering etc. - key design drivers: minimize loss, power handling, tolerances, thermal, low PIM, wide bandwidths

Reflector & Feed Assembly performances are most crucial for satellite antennas

Contoured Beam Antennas

- The beam shape fits closely to the coverage of a country or a region. Used for FSS and BSS satellite services
- Contoured or shaped beams are synthesized using two methods
- Most common and cost-effective method is using shaped surface of reflector to synthesize the beam (phase-only synthesis)
- Key design aspects:
 - maximize the minimum coverage area gain (MCAG)
 - maximize C/X > 33 dB
 - minimize the copol levels outside the coverage and with interfering beam (C/I > 30 dB)
- Antenna types:
 - parabolic reflector with feed array (old technology)
 - dual-gridded reflector (limited to LP applications only)
 - single shaped reflector (LP & CP)
 - dual-reflector shaped Gregorian antenna (LP & CP)
 - other types (SFOC, FFOC, Imaging, ADE etc.)

VP

VP

HP

Pq.19

HP

Synthesis Method for Shaped Reflector

* S. Rao, "Design and Analysis of Multiple-Beam Reflector Antennas", IEEE AP-Magazine, pp. 53-59, August 1999

CONUS Beam for DBS

Highly Weighted Beam to compensate for Rain Fade

Contoured Beam Antennas: Multiple Coverage Regions

Single Beam Provides Weighted C-Band Coverage to Africa and Turkey

Gridded Reflectors & Gregorian Antennas (High XPD)

Feed Assembly Design Considerations

- Meet bandwidth requirements including thermal excursions
- Provide desired illumination (> 15 dB taper) for the reflector or beamwidth if used as the antenna
- Meet the low X-pol requirements (< -40 dB for FSS/BSS)</p>
- Low sidelobe levels (to minimize spill-over losses)
- Power handling (6 dB margin by design, 3 dB by test)
- PIM-free design features (< -135 dBm typical, thermal PIM)</p>
- Return loss > 25 dB
- Low insertion loss (< 0.25 dB)</p>
- Meet desired isolation between bands (> 70 dB) & filter other bands
- Low mass
- Meet thermal requirements (-140°c to +170°c)
- Better manufacturing tolerances

Advanced feed assemblies with high power handling, low PIM, low loss & multi-band capability with low mass and compact size are key for future SATCOM antennas

Feed Types

C-Band Tx/RX Feed Assembly

Multi-Mode Horn

	Parameters	Measured Performance		
8	Frequency, GHz	Tx: 3.625 - 4.2		
		Rx: 5.85 - 6.425		
	Axial Ratio	< 0.2 dB on Axis		
1	Insertion Loss	Tx: < 0.15 dB		
		Rx: < 0.05 dB		
	Return Loss	Tx: > 28 dB		
3		Rx: > 32 dB		
	Isolation	$RHCP \leftrightarrow LHCP > 25 \text{ dB}$		
		$Rx \leftrightarrow Tx > 60 \text{ dB}$		
100	Peak Power	10 kW Multipaction		
	PIM	< -140 dBm, 7 th Order		
	Edge Taper	20 dB (±30°) Typical		
	Cross-Polar	< -38 dB ($\pm 30^{\circ}$) relative to		
	Levels	peak		
	Size, Feed	28.5"(L) x 12"(W) x		
Sec.		12.7"(H)		
3	Mass, Feed	< 12 Kg (with brackets)		

111

Trifurcated Horns

Ku-Corrugated Horn

S. Rao

MBA versus Contoured Beam Payloads

S. Rao

Pg.26

Frequency Reuse Schemes

Frequency/Aperture Reuse Schemes

S. Rao et al., "Development of a 45 GHz multiple-beam antenna for military satellite communications", IEEE Trans. Antennas & Propagation, vol. 43, 00. 1036-1047, October 1995

Evolution of MBA Technology

Example: MBA supporting 5 bands and 3 different services using Common antenna

MBA for Local-Channel Broadcast

Multiple Beams with Non-Uniform Spacing & Non-Uniform Size

MBA Horn Comparison

CONVENTIONAL HORN (CORRUG.) DUAL-BAND Thick Corrugations 54 % Eff. Tx & Rx Heavy & Bulky MULTI-MODE HORNMULTI-MODE HORNNARROW BANDWIDE BANDSINGLE BANDDUAL-BANDStep-DiscontinuitiesSlope-Discontinuities> 85 % over Tx or Rx> 85% over Tx & RxLight & CompactLight & Compact

Multi-band Antenna Performance

Frequency	Return Loss	X-pol (20°)	Efficiency
(GHz)	(dB)	(dB)	(%)
12.5	-26.5	-22.3	82
17.3	-48.0	-22.5	80
17.8	-50.2	-23.6	80
18.4	-43.6	-23.6	79
20.2	-41.7	-22.1	76
24.8	-50.1	-23.0	76
25.3	-44.3	-23.7	76
28.5	-44.0	-23.9	75
30.0	-45.2	-22.1	74

EOC Directivity

Freq	Coverage	Peak	Co-pol	C/X
12.45	±0.5°	49.0	47.4	32.8
17.55	±0.5°	51.9	49.5	28.7
19.30	±0.5°	52.6	49.8	27.4
25.00	±0.5°	53.5	50.1	23.3
29.25	±0.5°	53.6	50.0	18.4

Multi-Band Feed Assembly Schematic

Stepped Reflector for Multi-Band Applications

Non-Focused Reflector

and LEO Satellites", U.S. Patent # 7710340, May 04, 2010

NFR For Flexible CONUS Coverage (DABS)

MBA for High Capacity Satellites

Dual-Band Feed Assembly Integrated with IFAs & OFAs, & TCs

\$ 6 million cost saving, and 0.40 dB improved RF performance

Common Aperture Antenna for Shaped and Spot Beams

Large Deployable Reflectors for MSS

AstroMesh 12 meter Antenna (Perimeter Truss)

Harris 22 meter Antenna (Hoop Truss)

Mesh Reflectivity Loss [13]

Antennas for Scientific Missions

Micro-Satellite

MRO's antenna after integration.

Spring-back Reflector

Exploration Future Bands: 72 GHz & 84 GHz (V/W Bands)

High Power Test Method: Pick-Up Horn Load

S. Rao et al., "A novel method for high-power thermal vacuum testing of satellite payloads using pick-up horns", IEEE Antennas & Propagation Magazine, Vol. 49, #3, pp. 134-145, June 2007

S. Rao et al., U.S. Patent #s 7598919 & 7692593, 2010

Multipaction

In order to prevent multipactor breakdown, special considerations need to be made during design and planning phases

Selection of materials is important

Certain materials are less susceptible to free electron generation.
 Choosing these materials can generate higher capabilities

Proper analysis is critical

- Analysis of critical components is the best way to understand margins
- Today's field analysis tools are quite accurate
- Detailed field analysis combined with industry available empirical data on measured breakdown thresholds can provide an accurate assessment of the risk

>Test critical components with low margins

- If design margin is <3 dB, a qualification unit is recommended
- If design margin is <6 dB, flight testing should be considered

Cleanliness in manufacturing & handling

Multipaction Principles

De-rating Factor	Margin, dB
VSWR	2.0 to 2.5
Oxidation	1.0 to 0.5
Contamination	2.0
Migration of contamination	1.0
TOTAL	6.0

Pg.46

Small Satellites

Туре	Mass (kg)	Cost (US \$)	Time of Development from Proposal to Launch
Conventional large satellite	>1000	0.1-2 B	>5 years
Medium satellite	500-1000	50-100 M	4 years
Mini-satellite	100-500	10-50 M	3 years
Micro-satellite	10-100	2-10 M	~1 year
Nano-satellite	1-10	0.2-2 M	~1 year
Pico-satellite	<1	20-200 k	<1 year
Femto-satellite	< 0.1	0.1-20 k	<1 year

Antenna Ranges

50' X 50' Planar Near-Field

Two 12' X 12' PNF

Bistatic Range

Spherical Near-Field

Anechoic Chamber

Conclusions

> Future trends in satellite antennas and payloads:

- High capacity satellites for PCS with > 1 Tbps capacity
- Large deployable mesh-reflectors (> 50 m) with large OPI for high freqs
- Multiple band hybrid payloads, light-weight compact feed assemblies
- Larger power TWTAs, larger power spacecrafts (> 30 KW DC)
- Reconfigurable antennas, origami based antenna structures
- Agile payloads with anti-jamming capability
- Low-cost payloads, meta-materials, EBG, nano-technology etc.
- Ultra wideband antennas with > 20:1 bandwidth ratio
- High power handling and low PIM feed technologies
- Antenna engineer needs several skills to develop advanced hardware needed for complex antenna systems of the 21st century

21st Century satellites need innovative antenna solutions leading to advanced payloads