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1. Introducing ICAL at INO

Primary Cosmic Rays

Pottipuram (Theni)

1 ton ICAL Detector

» v oscillation parameters,

v mass hierarchy
» Search MMs, DMP
decay
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Physics reach of Iron Calorimeter detector

ICAL will measure atmospheric muon neutrinos and muon-antineutrinos
Energy range: 1 GeV < E, <20 GeV

Zenith angles: 0° <0, <70° 110° <6, <180°

» Neutrino mass hierarchy — normal or inverted
» Neutrino mixing parameters (Am,,?, 0,,)

» Non-standard interactions

» Ultra high energy cosmic muons

White paper on “Physics Potential of the ICAL detector at INO”
under review in Pramana (2016); arXiv:1505.07380



Mass hierarchy of neutrinos — sensitivity of ICAL
» m;<m,<m; (NH)ormg;<m;<m,(IH) ?
» ICAL can identify mass hierarchy using atmospheric v, ,VM

» With accelerator based expts. can probe CP violation in v-sector
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— 5.0 cm thick iron plate

The INO ICAL detector

Copper coils

— 4 cm air gap for RPC detector

No of modules 3
Detector dimension | 4Smx 16 m x 15 m
No. of layers 151

Module dimension

l6mx 16 m x 14.4 m

Iron plate thickness

5.6 cm

Mass

51 k-ton

Gap between each
layers

4 cm

Two 2 mm thick float Glass
Separated by 2 mm spacer

S

2 mm thick
spacer

Pickup strips

Glass plates

Graphite coating on the
outer surfaces of glass

%+ Magnetized ICAL will identify u™/ u- and
measure the momentum

<+ RPC will provide position and time
information




Electromagnetic simulation study of ICAL magnet

» B-field simulation using 3D finite element commercial software
» B-field uniformity studied for various plate thicknesses, tiling configurations

air gaps, slots (for Cu colls), coil configurations. NI, 2 low carbon steels
» Muon momentum response (from reconstructed trajectory) studied for a few

coil currents, plate thicknesses
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Fractional area ( % )
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Muon response of ICAL for various B-field strengths
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2. Searching magnetic monopoles at ICAL@INO

» Dirac (1931) attempt to understand quantization of electric charge led to idea
of magnetic monopole with magnetic charge g,, = n(zc/2e) [g,=(137/2) €]

» t’Hooft (1974), Polyakov (1974) showed that certain kinds of Grand Unified
Theories (GUT) = my,, ~ 10*° GeV/c?

» Rubakov (1981), Callan (1982) showed that GUT MMs can catalyze proton
decay In its passage through matter with o,y ~ 6., ~ 100 mb = A ~ 1m
MM passing through matter would lead a series of p decays in path

Wilczek (1982): oy, could be o,,.q,



Parker (1970) showed that light MMs will gain energy from galactic
magnetic field (~ 0.3 nT or ~10~ B4, )

MM flux < 10->cm~2 s~1 sr1 for my,,, < 1017 GeV/c? (Parker bound)
Experimental searches for GUT magnetic monopoles in cosmic rays and
light MMs at accelerators use 1onization or current induced in a loop

KGF collab. @y, < 3x 10-*4, MACRO at Gran Sasso, SLIM, IceCube,
ANTARES, Baikal and Kamiokande

Cabrera (1982) at Stanford found one event in a SC loop. In 1990 his group
reported an upper bound 2000 times smaller.

CDF at Fermilab : o (pp - MM + X) < 0.2 pb



» Magnetic charge gy, = n (ic/2e) = (137/2) e forn =1
» Energy loss of MM increases with velocity (compare with muon)

Mag. Monopole in RPC gas
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|ICAL at underground site (schematic)
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Use track information (long) and time-of-flight information (slow) to

discriminate against muons (TOF ~ 3.3 usec/m for v,,,, = 300 km/sec)

Heavier MMs with typical inter-galactic speeds easily penetrate 1 km

rocC

Up

K. Here flux from upper hemisphere considered (AQ = 27 sr).

per bounds from 10 years running for heaviest MMs lower than

MACRO by ~ 2

With additional detectors on 4 of 6 sides of cavern, this iIs further

lowered by ~ 2



Upper bound on MM flux for 10
yrs of ICAL (10-1°cm—=.s71)
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3. Searching for anomalous KGF events at ICAL

» About 7 anomalous events found during 25 years of running the proton
decay experiment — multiple tracks leading back to an origin not in
detector or rock but in air

» Is i1t due to a short lived particle produced in neutrino — rock interaction
(KVL Sarma, G. Rajasekaran)? Ruled out by accelerator experiments!

» Rajasekaran, Murthy propose a light 5-10 GeV Dark Matter particle

solution to KGF anomaly



» DMP decay to leptons would imply that neutrinos from the cosmos
should have been seen in large neutrino detectors
Nge. ¢ R3 but g4, oc R=2 so stringent bounds have ben derived

» However if KGF events are genuine, we should see many more
with ICAL as cavern & detector ~ 10 times larger

» With additional detectors on 4 sides, should be able to provide data

for/against KGF events in 2-3 years of running time



Muon reconstruction efficiency in ICAL

Time of flight between wall & ICAL detectors

Reconstruction Efficiency
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4. Sterile neutrino mixing at ICAL using atmospheric neutrinos
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1 Mton.yr exposure, 6, assumed = 0
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5. Cryogenic Indium detector for solar neutrinos

» Raghavan proposed an In detector for solar neutrinos (1976)
~2005 proposed segmented 8% In-loaded 100 ton LS detector

» Segmentation needed to reduce huge random background from natural 3
decay of °In (95% abundance) — “photon lattice” 3 in. resol. in X,Y, Z

» Booth (1987) explored possibility of measuring g-p in superconducting In

» How about a cryogenic bolometer of In metal (or a suitable compound)?



Levels excited in low energy v, CC interaction with °In
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Events
20keV - 5y - 10t

Signal

Delayed Coincidence Tag
Time Spectrum (S/B = 3)

Background
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Ref. Raghavan’s Physics Colloguium
at BARC



Measure E spectrum of pp, 'Be, pep neutrinos (~50-1500 keV) in real time
Measure core temperature of sun directly via Doppler broadening of 'Be
neutrinos [Bahcall] as well as the p-p neutrinos [Grieb, Raghavan 2007] =
Search for a possible sterile neutrino-electron neutrino mixing using a
radioactive v, source or one made online using a high current p/d beam on a
suitable target [6].

Search for neutrino-antineutrino oscillations using strong anti-v, source or
one made online using a high current p/d beam on a suitable target.

Search for dark matter (2-body) decay and/or annihilation through

unidentified peak in neutrino spectrum.



Potentially excellent energy resolution of cryogenic bolometer (~
few keV) using Indium especially suited for the items 2 and 5.
Cryogenic detector (10 mK) needs segmentation into units of
between 1-3 cm dimension (a full cost-benefit analysis necessary)
with total mass 5-10 tons (Mol ~ 1m3)

5-10 modules each with its own shielding. In view of the internal
1151n radioactivity the shielding could be placed outside the cryostat
Each of the segments would have at least one T-sensor

Timing < 1 us needed. Bolometer may not be appropriate?
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C. Grieb, R. Raghavan, PRL 98, 141102 (2007)

TABLE I. Neutrino energies and thermal shifts.

g(lab) +A{E) +6{E) +AE + 8K
keV keV keV keV keV
pp 420.2¢ 3.41° 1.6 5.2¢ 1.7
pep 1442.2 6.65" 4.54
Be 861.8 1.29° 0.81

aQ-value

b Mean energy shift (for pp in range 110-340 keV)
¢ Shift of max. energy in spectrum

O(E) Precision attainable in A{E)
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