Raman Tracking of Charge Transfer States in Molecular Systems

ASET Colloquium @ TIFR, Mumbai on 14th July 2017

Jyotishman Dasgupta

Department of Chemical Sciences Tata Institute of Fundamental Research, Mumbai

Energy Status in INDIA: Need Renewable Sources

2010 Data Govt. of India

Electrical Energy needs for India in 2030:

800,000 MW power (5 x the current production)

Primary commercial energy in 2030:

1400 mtoe (3x the current consumption)

The Government plans to achieve 100 GW solar power by 2022

Solar Energy Conversion: Photovoltaics

1839 Becquerel discovered the Photovoltaic effect

Interfacing materials with distinct electron affinities or Fermi energies

Light absorption >1.1 eV at the p-n junction leads to photocurrent

Current efficiencies > 25% for crystalline Si and ~10% for amorphous Si

Current Si technology is Rs 30/KWh but we want Rs 5/KWh

Photovoltaics: Looking beyond Si

https://www.nrel.gov/pv/assets/images/efficiency-chart.png

Cheap materials: Molecular? LARGE Absorption cross-section?

Interface Engineering: Solution process? Device Architecture?

New mechanisms: Singlet Fission or Multiple Exciton Generation

Photovoltaics: Looking beyond Si

Gary Hodes, Science, 2014

https://www.nrel.gov/pv/assets/images/efficiency-chart.png

Conjugated Polymers

Quantum Dots

Pervoskite

Figures courtesy: Google Images

Organic Semiconductors: Tunable Bandgaps

Conjugated polymers!!!

Bandgap can easily be tuned by introducing different chemical groups in polymer skeleton

bandgap decreases

Polymer chemists: Klaus Mullen, Alan Heeger, Richard Friend, N. Sariciftci, Fred Wudl and more

Excitons : The Si advantage!

Pope and Swenberg

Charge-less particles (*electron-hole* bound pairs) that can diffuse

Excitons in Silicon

Radius ~ 10-20 nm Binding energy ~ 10 meV

If the binding energy is comparable to room temperature Easy to generate *FREE* charges!

Charge Generation in Organics: The Central Dogma

Exciton binding energy: 400 - 1000 meV

Exciton radius: <1 nm i.e. on the backbone of the molecule

Charge Generation in Organics: The Central Dogma

Photosynthesis operates with multiple organic chromophores

Charge Transfer step key to FREE charges!

Charge Generation in Organics: The Central Dogma

Stitching Donor-Acceptor Interfaces critical!

Charge Transfer step key to FREE charges!

Conceptual Idea of OPVs: Solution processing

Richard Friend Alan Heeger

Polymer Donor

Fullerene Acceptor

Simple spin casting on electrodes helps make these devices!

Key: *Heterojunction architecture*

Organic Photovoltaics: Current Trends

Donor-π-Acceptor Polymer/ Fullerene

OPV efficiency of 13.2%

2016 Press release from Heliatek Inc

Charge Generation and Energy Loss in OPVs!

Inside a BHJ Solar Cell: *Polymer:Fullerene* Interfaces!

Solvent engineering of the morphology very critical for efficient charge extraction

Early studies: Sariciftci and co-workers; Heeger and co-workers (2001) *Ternary phase as a seed*: Janssen and co-workers (2013, 2015); Dasgupta and co-workers (2016)

Inside a BHJ Solar Cell: *Polymer:Fullerene* Interfaces!

Palas Roy, Ajay Jha and Jyotishman Dasgupta; Nanoscale 2016, 8, 2768-2777

Solvent engineering of the morphology very critical for efficient charge extraction *Early studies*: Sariciftci and co-workers; Heeger and co-workers (2001) *Ternary phase as a seed*: Janssen and co-workers (2013, 2015); Dasgupta and co-workers (2016)

Limits to energy conversion: Track the Singlet Excitons and Charge Generation Bulk TA measurements: Natalie Banerjee, Eric Vauthey; Heeger and co-workers; Ito and co-workers Exciton Imaging: Libai Huang and co-workers; Naomi Ginsberg and group; Dario Polli and co-workers Papanikolas and co-workers

Low-bandgap Polymers: Donor-Acceptors Stitched!

bandgap and exciton lifetime decreases

DONOR-(π BRIDGE)-ACCEPTOR

Chemical design incorporates these ideas!

These polymers work as OPV materials possibly because of strong ICT

Excitons Dynamics in Donor-π-Acceptor Polymers

Exciton dissociation and dynamics key towards optimizing charges!

The Fundamental Question is:

What is the reaction coordinate for Exciton-to-Charges reaction?

Tracking of Excited States: Transient Absorption

Femtosecond Pump-Probe experiment:

Creates a temporal map of RAPID events

With ~50 fs resolution we can watch events till nanoseconds

Tracking *Excitons* and *Charges:* Pump-Probe Data

Palas Roy et al. *Nanoscale* **2016**, *8*, 2768-2777

Broad features in electronic absorption features limits the understanding

Complexity of Structure and Transitions: $D-\pi$ -A polymer

Higher conformational degrees of freedom

Multiple excited states!

with Prof. Satish Patil, IISc Bangalore

Exciton Dynamics: How to resolve then?

Time-resolved Vibrational Spectroscopy

Will track the structural changes happen once the Exciton is generated

Can we track the reaction coordinate for Relaxation?

RAMAN SPECTROSCOPY and Resonance Effect

Electronic Resonance Effect on Raman intensities!

Sir C.V. Raman

E

E_F

1 ps ~ 15 cm⁻¹ vs 100 fs ~ 150 cm⁻¹

Femtosecond Stimulated Raman Spectroscopy

Kukura, McCamant and Mathies, *Annu. Rev. Phys. Chem*. (2007) Dasgupta, Fronteira, Fang and Mathies in *Encyclopaedia of Biophysics* (2012) Ajay Jha and JD, *ISRAPS Bulletin* (2013) Hoffman and Mathies, *Acc. Chem. Res.* (2016) Palas Roy, Shreetama Karmakar and JD in *Handbook of Molecular Spectroscopy* (2017)

3 pulses needed: Raman pump on top of the two other pulses

Femtosecond Stimulated Raman Spectroscopy

Kukura, McCamant and Mathies, Annu. Rev. Phys. Chem. (2007)
Dasgupta, Fronteira, Fang and Mathies in Encyclopaedia of Biophysics (2012)
Ajay Jha and JD, ISRAPS Bulletin (2013)
Hoffman and Mathies, Acc. Chem. Res. (2016)
Palas Roy, Shreetama Karmakar and JD in Handbook of Molecular Spectroscopy (2017)

3 pulses needed: Raman pump on top of the two other pulses

At TIFR: Our FSRS set-up

Grating Filter for Raman pump

Palas Roy, Ajay Jha, Vineeth Benyamin and Thulasi Ram

At TIFR: Our FSRS set-up

Grating Filter for Raman pump

Palas Roy, Ajay Jha, Vineeth Benyamin and Thulasi Ram

At TIFR: Our FSRS set-up with NIR probe

fs-Actinic pulse Starts the Photochemistry 10-500 nJ/pulse

ps-Raman Narrow band pulse
Spectral width (~10 cm⁻¹)
0.5 to 1 μJ/pulse; 780-840 nm

fs-Probe Broadband pulse
 Pulse width(~15 fs)
800-1200 nm; 20 nJ/pulse

Excited state FSRS can be plotted by filling in the GS contribution

Can we selectively probe the Exciton?

Ground state Raman of TDPP-BBT C₈H₁₇ (C-N+C-C) DPP str. Thiophene str. C₁₀H₂₁ Stimulated Raman Gain BBT (breathing +bend) TDPP C=C str. Thiophene bend OC₁₂H₂₅ 320 1509 C₈H₁₇ C₁₀H₂₁ C₁₂H₂₅C 1422 cm⁻¹ 1229 cm⁻¹

IMPORTANT for todays talk!!!

Raman Snapshots of the Polymer with 816 nm Pump

It is an **EXCITON** we are in resonance with!!!

33

Raman Snapshots of the Exciton!

Frequency changes

Enhanced conjugation in the backbone

Raman Snapshots of the Exciton!

due to planarization

Stimulated Raman Gain

Direct visualization of Bridge planarization

Planarization of the Bridge Thiophene in D-B-A!!

Local torsional relaxation leads to enhanced conjugation & Raman cross-section

G. Scholes and coworkers, Chem. Sci., 2012, 3, 2270

2D-eelctronic spectroscopy on CT states implied relaxation based on red-shift

Localization of the Exciton and its CT character

10

30

OC12H25

Stimulated Raman Gain

Summary: Direct observation of Bridge Planarization

Selectively probing Exciton using FSRS and correlating to TA

Palas Roy et al. under revision

Initial planarization leading to conjugation and thus the ICT character

OPV lessons: Target Backbone Torsions

Charge Transfer vs Relaxation

Slowing the relaxation dynamics to allow charge transfer from hot states!

Side-chain engineering to align the Donor and Acceptor to ensure large CT yields.

RELAXATION channels in CT and CS states are being interrogated!

Twisted-Intramolecular CT state in Staining Dyes?

N,N-diethyl-N'-methyl-stilbazolium cation

Twisted-Intramolecular CT state: A Raman Story

Viscosity dependent Raman signature: Rise of the state and its Lifetime is affected

unpublished

"On" MINUS "Off"

Stimulated Raman Imaging: Label-free Idea

Ground state Raman spectrum useful for imaging lipids

Sunney Xie and colleagues Science (2008)

Explore the Charge Transfer paradigm for Chemical Work

Acknowledgements: Our Group and Friends!!!

Collaborators

Prof. Satish Patil and Dr. B. Puttaraju (IISc Bangalore) Prof. Anil Kumar (IIT Bombay) Dr. Aditya Dharmadhikari (TIFR Mumbai) Dr. Ravi Venkatramani (TIFR, Mumbai) Dr. Vardharajan Srinivasan (IISER Bhopal) Prof. ASR Koti (TIFR Mumbai)

Department of Chemical Sciences, TIFR THANK YOU SATYA!

Raman Pump generation!

Efficiencies are poor (5% at best)

Other methods are being developed.

Optical Kerr Experiment(OKE)

time / ps

Kerr effect is the change in refractive index of a material due to an external electric field. (Electro-optic effect)

 $\Delta n = \lambda K E^2$

The material becomes birefringent and OKE is when the birefringence is induced by an optical pulse.

$$n = n_0 + \overline{n_2} I$$

OKE Setup

