GRB (prompt) spectral evolution Multi-wavelength and Multi-instrument perspective

Rupal Basak

Gamma-ray Bursts : Prompt to Afterglow NCRA, July 04, 2017

KTH Royal Institute of Technology and Oskar Klein Centre, Stockholm, Sweden

Challenges of the prompt emission study

- Standard scenario. Synchrotron (Rees & Meszaros 92, 94. Fitted with Band (+93) function.
 - 1. Shortcomings of synchrotron model (Preece+98).
 - 2. Wide field of view detectors.
 - 3. Rapid evolution and Overlapping pulses.

Challenges of the prompt emission study

- Standard scenario. Synchrotron (Rees & Meszaros 92, 94. Fitted with Band (+93) function.
 - 1. Shortcomings of synchrotron model (Preece+98).
 - 2. Wide field of view detectors.
 - 3. Rapid evolution and Overlapping pulses.
- **Single pulse:** Crider+97; Ghirlanda+03; Ryde 04, Ryde & Pe'er 09: Thermal emission.

GRB spectral evolution

Challenges of the prompt emission study

- Standard scenario. Synchrotron (Rees & Meszaros 92, 94. Fitted with Band (+93) function.
 - 1. Shortcomings of synchrotron model (Preece+98).
 - 2. Wide field of view detectors.
 - 3. Rapid evolution and Overlapping pulses.
- **Single pulse:** Crider+97; Ghirlanda+03; Ryde 04, Ryde & Pe'er 09: Thermal emission.
- Fermi era: wider band. Variety of models Ryde+10; Guiriec+11,13; Axelsson+12; Basak & Rao 13, 14; Burgess+14; Iyaani+15 (spectrum with two humps or broad top)
- Statistically difficult, **Novel strategy:** Exploit capabilities of different detectors at different phases

Swift XRT (~200 eV @6 keV)

GRB spectral evolution

Example GRB I

1. GRB 090618 (Basak & Rao 2015a, ApJ)

GRB spectral evolution

Example GRB I

1. GRB 090618 (Basak & Rao 2015a, ApJ)

GRB spectral evolution

Example GRB I

1. GRB 090618 (Basak & Rao 2015a, ApJ)

GRB spectral evolution

Example GRB II

2. GRB 130925A (Basak & Rao 2015b), Ultra-long GRB

Debate: (1) GRB or a **TDE**? HST image shows 600 pc offset from the host. But, morphology of the host indicates recent major merger. Combine the knowledge from host study and emission process.

GRB spectral evolution

130925A (ultra-long) vs 090618 (long)

GRB spectral evolution

•Comparison: 130925A with 090618. Time axis of 090618 is stretched.

●Upper panel: kT evolution of the two blackbodies.

•Lower panel: Hardness ratio (ratio of counts in 1.5-10 keV to that of 0.3-1.5 keV)

• Slower evolution of ultralong GRB. Crude estimates: accretion timescale from freefall time scale

$$t_{acc} \sim t_{ff} \approx 10^4 R_{12}^{3/2} M_{50}^{-1/2} s$$

Origin of 2BBPL: spine-sheath jet?

Basak & Rao 2015a, ApJ

Other groups:

processes

Ito + 13: Simulation in a stratified jet. Found the double hump and non-thermal component. Iyyani + 15: Comptonization of thermal photons that mimics the shape.

GRB spectral evolution

Outlook: A Few Observations

1. Double jet break: GRB 030329

Granot + 03, Nature (refreshed shock) Opt/X-ray break: 0.55 d. Radio break: 9.8 d. Jet opening angle $(\theta_J) = f(t_j, n, E)$. (Sari+99, Panaitescu & Kumar 02). Inner: $\theta_J = 5^0$, Outer $\theta_J = 17^0$.

2. GRBs with LAT detection:

GeV emission: delayed, long lasting. External forward shock during afterglow (Kumar & Barniol Duran 10). Two class: Hyper-fluent LAT and low-fluent LAT class (Ackermann + 13).

Basak & Rao 2013, ApJ

GRB spectral evolution

A Few Observations

GRB spectral evolution

Two possibilities: (1) Afterglow Phase, (2) A second pulse hidden in the data

Two possibilities: (1) Afterglow Phase, (2) A second pulse hidden in the data

Two possibilities: (1) Afterglow Phase, (2) A second pulse hidden in the data

I. Spectral curvature at late time

GRB spectral evolution

Two possibilities: (1) Afterglow Phase, (2) A second pulse hidden in the data

II. Long term evolution

Rupal Basak, KTH, Stockholm

4E-8

 $F_{\rm XRT}$

E-9

Two possibilities: (1) Afterglow Phase, (2) A second pulse hidden in the data

III. Bayesian block and Hardness evolution

GRB spectral evolution

Rupal Basak, KTH, Stockholm

IV. Evolution of Polarization

Summary and Conclusion

- Prompt Emission spectral shape still debated. Degeneracies.
- Multi-wavelength and Multi-instrument required.
 Long term spectral evolution. Better sensitivity and resolution.
- Spectrum has double hump.
 Phenomenological model: Two blackbodies and a power law (with cutoff)
- A spine-sheath jet fits in the observations.

Lessons learnt from GRB 151006A

Rao + 16, ApJ

- There could be surprises even in single pulse GRBs. GRB 151006A is unusual.
- How can CZTI contribute?
 - Will require brighter GRBs. Not very rare.
 - Current sample >50 detections.
 11 with significant polarization. (Talks by Tanmoy and S. V. Vadawale)
 - Interesting cases: two >3sigma detections. One very high, other very low.
 - Statistical sample: polarization degree and angle.

Toma+09: Predicted polarization (50-500 keV) w.r.t E

GRB spectral evolution

A common feature?

GRB 090618 (Basak & Rao 2015a, ApJ)

Ultraluminous X-ray sources (Kajava & Rico-Villas 2016)

Soft Gamma Repeaters

Spine-sheath jet: e.g., Powerful blazars (Ghisellini 2005).

A very recent image of M87 jet. (K. Hada, Malaga conference) Info: 15 GHz, VLBA, pc scale.

Rupal Basak, KTH, Stockholm

GRB spectral evolution