

Lutetium-177 : the new prodigy in therapeutic nuclear medicine

Sharmila Banerjee Radiation Medicine Centre BARC

- Scope of radionuclide therapy
- Targeted therapy Selection of therapeutic radioisotope
- Advantages of Lutetium-177 as a therapeutic radionuclide
- Lutetium chemistry, radiolabeling, use of bifunctional chelates
- Production of ¹⁷⁷Lu possible routes
- Optimization of production route
- Clinical translation of Lu-177 radiopharmaceuticals
- Peptide Receptor Radionuclide Therapy
- Theranostic potential of ¹⁷⁷Lu
- Lu-177-based Therapy in Radiation Medicine Centre

• Summary 9-May-18

Selection of a Therapeutic Radionuclide

□ Mode of decay : Particulate emitter (α , β^- , Auger electron), β^- is the choice

- \Box Energy of the β^{-} particle : Depends on the application
- Presence of low energy low yield γ photons : Suitable for scintigraphy and dosimetry calculations
- □ Half-life: Advantageous to have a long half-life (few days)
- Easy production, simple radiochemical processing
- Availability with high specific activity and excellent radionuclidic purity
- Strong and irreversible binding with carrier molecules

Radionuclide therapy beyond ¹³¹**I and** ³²**P Emergence of Lu-177 as a therapeutic radioisotope**

Why Lu-177

- Presence of high energy gamma components with large abundance (364 keV, 81%) in ¹³¹I
- High energy β^{-} particles of ³²P not ideal for targeted radiotherapy

Advantages of ¹⁷⁷Lu as a Therapeutic Radionuclide

- Suitable nuclear decay characteristics
- Maximum β^{-} energy not very high
 - Low tissue penetration
 - > Advantages for targeting microstatic disease
 - Lower dose to the non-target organs, mainly kidneys
- Presence of low energy γ photon in low abundance
 Simultaneous scintigraphy and dosimetric stu
 - Simultaneous scintigraphy and dosimetric studies
- Comparatively longer half-life
 - Permits broad distribution
- Possibility of production with high specific activity using medium flux reactors ($\sigma = 2100$ b)
- Simple post-irradiation radiochemical processing

- Our group one of the first few researchers to recognize the favourable nuclear decay characteristics and feasibility of production
- First irradiation of ¹⁷⁶Lu 1999
- Optimization of irradiation parameters and processing methods
- Preparation of potential radiotherapeutic agents using ¹⁷⁷Lu documented
- Regular supply of ¹⁷⁷Lu to AIIMS for formulation of the therapeutic agents started from September 2006

Potential Applications of ¹⁷⁷Lu

□ Palliative care in painful skeletal metastasis Lower dose to bone marrow Less decay loss post-preparation □ Radiation synovectomy of small / medium joints **Targeted tumor therapy using** Monoclonal Antibody (RIT) **Receptor specific Peptides (PRRT)** → Useful for small tumor / metastases Lower kidney toxicity

Lutetium-177

Periodic Table of Elements

- Lutetium -The heaviest lanthanide
- Atomic Number 71
- Electronic configuration [Xe]4f¹⁴5d¹6s²
- Highly stable +3 oxidation state
- Lu⁺³ has 89.1 pm ionic radius
- High stability of 8/9 coordinated chelates with N,O, P, S donor ligands

Complexation of Lu⁺³ with polydentate chelators

chelating agent	log stability constant
diethylenetriaminepentaacetic acid (DTPA)	12.5
ethylenediaminetetraacetic acid (EDTA)	19.8
nitrilotriacetic acid (NTA)	22.4
1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)	25.4
1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A)	23.0
1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)	15.3

Nitrilotriacetic acid (NTA)

Ethylenediaminetetraacetic acid (EDTA)

Diethylenetriaminepentaacetic acid (DTPA)

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)

1,4,7-Triazacyclononane-1,4,7-triacetic acid (NOTA)

ASET Colloquium-May 4, 2018-Sharmila Banerjee

Production of Lutetium-177

Lutetium-177 production – points to consider

Activity = $N\sigma\phi(1-e^{-\lambda t})$ Bq

- N is the target atoms
- $-\sigma$ is the cross section
- $-\phi$ is the flux of the reactor
- $-\lambda$ is the decay constant
- t is the time of irradiation

Lutetium

- **σ 2100** barns
- ${}^{176}Lu(n,\gamma){}^{177}Lu$
- Minimum radiochemical processing
- >20 Ci/mg at $1x10^{14}$ n.cm².sec.
- Half life 6.73 days
- β- energies 608 keV (89.9%), 330 keV (7.27%)
- γ energy 113 keV (6.4%), 208 keV (11%)

Production of ¹⁷⁷Lu in a Research Reactor

The Dhruva Reactor – The largest research reactor in India

- 100 MW reactor
- $\sim 1 \times 10^{14}$ n.cm².sec maximum flux
- Medical Isotopes produced in sufficient quantity
- Processing done in BARC

Clinical Translation of 177Lu-radiopharmaceuticals

Neuroendocrine Tumors/Cancers

Neuroendocrine Tumors/cancers (NET) are the tumors/cancers of the 'Neuroendocrine system' which is the combination of 'Endocrine system' and 'Nervous system', or more specifically, the various interfaces between the two systems

□ Incidence of NETs is estimated to be around 3 new case per 1,00,000 people per year

Every year, new cancer patients registered: Over 7 lakh

Treatment of NET

- Chemotherapy: Most common therapy
- Surgery: Only therapy that can cure GEP-NETs
- Targeted radionuclide therapy Peptide Receptor Radionuclide Therapy (PRRT)

PRRT: Only effective treatment known for the in-operable & metastasized NET

¹⁷⁷Lu in context of Peptide Receptor Radionuclide Therapy (PRRT)

Somatostatin receptors - over-expressed in a variety of cancers of neuroendocrine origin (NET)

- Neuroblastomas
- Some medullary carcinomas
- Some prostate cancer
- Small cell lung cancer

Example of a peptide which mimic somatostatin hormone is tyrosine octreotate or TATE (a synthetic octapeptide)

TATE is conjugated with DOTA to give DOTA-TATE

DOTA-TATE is labeled with ¹⁷⁷Lu to target the somatostatin receptors overexpressed in NET

¹⁷⁷Lu is ideally suited for PRRT & ¹⁷⁷Lu-DOTA-TATE the first approved Lu-radiopharmaceutical in India

⁹Our PRRT Journey began with ¹⁷⁷Lu-labeled Lanreotide-DOTA

Lanreotide

Ditertiarybutyl dicarbonate (BOC) Dioxane, pH =10, RT, 30 min Lanreotide-BOC DOTA N - hydroxy succinimide, DCC DMF, pH =9, RT, 16 h

DOTA-Lanreotide-BOC

Trifluoroacetic acid Dichloromethane, 30 min, RT

DOTA-Lanreotide

¹⁷⁷Lu-DOTA-Lanreotide: A novel tracer as a targeted agent for tumor therapy. Sharmila Banerjee, et al, Nucl. Med. Biol. 31, 2004, 753-759.

Switching over to DOTA-TATE : A better vector in terms of receptor targeting

A radiopharmaceutical indigenously developed by BARC using Lutetium-177 produced in Dhruva reactor

- India is one of the countries to use this radiopharmaceutical
- Being used in several hospitals in India, using the method developed in BARC
- > 2500 patients have been treated in RMC alone till October 2017

On the preparation of a therapeutic dose of ¹⁷⁷Lu labeled DOTA-TATE using indigenously produced ¹⁷⁷Lu in medium flux reactor.

PRRT in India

- ➢ All India Institute of Medical Sciences, New Delhi
- Bangalore Institute of Oncology, Bangalore
- ➢ Inlaks and Budhrani Hospital, Pune
- > Jaslok Hospital and Research Centre, Mumbai
- Radiation Medicine Centre, Mumbai
- ➢ SPECT Lab., Pune
- Post Graduate Institute of Medical Education and Research, Chandigarh
- Kovai Medical Centre and Hospital, Coimbatore

Today there are about 25 Centres

Phosphonates in MBPP

Radiopharmaceuticals for metastatic bone pain palliation: Available options in the clinical domain and their comparisons", Tapas Das*, Sharmila Banerjee, Clinical and Experimental Metastasis 34, 2017, 1-10.

¹⁷⁷Lu labeled polyaminophosphonates as potential agents for bone pain palliation.
S. Banerjee, Nucl. Med. Commun. 23, 2002, 67-74.

R = -CH₂-P(O) (OH)₂ ASET ColloportMPay 4, 2018-Sharmila Banerjee

Development of ¹⁷⁷Lu-EDTMP – Uniting the Favourable Features of EDTMP and Lu-177

- Prepared and studied a number of cyclic and acyclic phosphonates forming stable complexes with ¹⁷⁷Lu in high yields
- ¹⁷⁷Lu identified as an ideal isotope for bone pain palliation > Medium energy β_{max}^{-} imageable γ , long half life
- Production and availability of ¹⁷⁷Lu in adequate quantity and therefore cost-effective and logistically viable for distribution
- Higher animal study with ¹⁷⁷Lu-EDTMP was possible with help of Hungarian counterparts in a Collaborative project
 Formulation, pre-clinical evaluation and preliminary clining investigation of an in-house freeze-dried EDTMP kit suit
- Regulatory approval obtained

9-May-18

Formulation, pre-clinical evaluation and preliminary clinical investigation of an in-house freeze-dried EDTMP kit suitable for the preparation of ¹⁷⁷Lu-EDTMP **Sharmila Banerjee**. Et al, **Cancer Biotherapy and Radiopharm** 29, 2014, 412-421.

¹⁷⁷Lu-EDTMP in human patients

¹⁷⁷Lu-EDTMP : A viable bone pain palliative in skeletal metastasis.
S. Banerjee, et al.: Cancer Biotherapy and Radiopharm. 23, 2008, 202-213.

¹⁷⁷Lu-DOTMP yet another promising candidate

DOTMP

Theranostic Treatment of metastatic bone pain with ¹⁷⁷*Lu-DOTMP: S* **Banerjee et al Clinical Nuclear Med.** 41, 2016, 966-967.

Formulation and evaluation of freeze-dried DOTMP kit for the preparation of

clinical-scale ¹⁷⁷Lu-DOTMP and ¹⁵³Sm-DOTMP at the hospital radiopharmacy, Sharmila Banerjee e tal. Radiochim. Acta, 193, 2015, 594-604.

Whole-body scans of a man (67 years, suffering from skeletal metastases originated from ca prostate) recorded by administering 3.7 GBq (100 mCi) of ¹⁷⁷Lu-DOTMP at 6 hours and 7 days post-administration (anterior and posterior views)

Radioimmunotherapy with ¹⁷⁷Lu

- ¹⁷⁷Lu-labeled Rituximab for Non Hodgkins Lymphoma
- ¹⁷⁷Lu-labeled Trastuzumab for Her2-positive-Breast cancer

Preparation of clinical-scale ¹⁷⁷Lu-Rituximab: Optimization of protocols for conjugation, radiolabeling and freeze-dried kit formulation Sharmila Banerjee* et al, J. Labld. Cpds. Radiopharm., 60, 2017, 234-241.

Images 72 h and 120 h post-administration of ¹⁷⁷Lu-trastuzumab

Clinical studies with ¹⁷⁷Lu-Hydroxyapatite for Radiationsynovectomy

Whole-body images of a patient recorded after 1 month of administration of ¹⁷⁷Lu-HA

SPECT-CT images of the knee joints recorded after 1 month of administration of ¹⁷⁷Lu-HA

Preparation and preliminary studies on ¹⁷⁷*Lu-labeled hydroxyapatite particles for possible* use in therapy of liver cancer., Sharmila Banerjee, et al. **Nucl. Med. Biol.** 35, 2008, 589–597.

Preparation and preliminary biological evaluation of ¹⁷⁷Lu labeled hydroxyapatite as a promising agent for radiation synovectomy of small joints, Sharmila Banerjee, et al Nucl. Med. Commun. 27, 2006, 661-668.

¹⁷⁷Lu-DOTA-17β-estradiol for targeting receptor overexpression

An estradiol-conjugate for radiolabeling with ¹⁷⁷Lu : An attempt to prepare a radiotherapeutic agent., Sharmila Banerjee, et al, **Biorg. Med. Chem.** 13, 2005, 4315-4322.

¹⁷⁷Lu labeled DOTA-Metronidazole/Sanazole

Agent for therapy of hypoxic tumors

Preparation and preliminary biological evaluation of a ¹⁷⁷Lu labeled sanazole derivative for possible use in targeting tumour hypoxia, Sharmila Banerjee, et al. **Bioorg. Med. Chem.** 12, 2004, 6077-6084.

¹⁷⁷Lu-Labeled Metronidazole for possible use in Targeting Tumor Hypoxi, Sharmila Banerjee et al., Radiochim. Acta 94, 2006, 375-380.

ASET Colloquium-May 4, 2018-Sharmila Banerjee

¹⁷⁷Lu-Porphyrin for Targeted Tumor Therapy

¹⁷⁷Lu-labeled carbon nanospheres an example of radionanomedicine

 177 Lu-DOTA-CNS–cRGDfK) for efficient nano-targeting of melanoma tumors expressing integrin $\alpha_v \beta_3$ receptors

Carbon nanospheres conjugated with p-NH₂-Bz-DOTA and cRGDfK

¹⁷⁷Lu-labeled Carbon Nanospheres: A New Entry in the Field of Targeted Radionanomedicine Sharmila Banerjee* et al, RSC Advances 6, 2016, 50761-50769.

Theranosis - A new concept in Personalized Medicine

- Theranosis : A combination of two interdependent applications therapy and diagnosis, using the same agent
- Individualized treatment regime **for planning a specific dose for a specific patient -** 'personalized medicine'
- Theranosis particularly relevant in nuclear medicine practices.
- A diagnostic radioisotope in a radiopharmaceutical replaced with a therapeutic radioisotope eg : ¹⁸⁸Re for ^{99m}Tc, using the same molecular vector & not compromising the biological avidity
- A diagnostic dose augmented to a therapeutic one in order to tailor the therapy in a specific patient
- Pre-therapy information of biopharmacokinetics and dosimetry utilized to personalize the therapeutic regime

¹⁷⁷Lu –Ideal from theranostic perspective

Theranosis - Diagnosis and Therapy using same isotope

Moderate β^{-} energy [497 keV maximum]

- Low tissue penetration
- Lower dose to the non-target organs

Presence of low energy γ photon in low abundance
[113 keV (6.4%), 208 keV (11%)]
– Simultaneous scintigraphy and dosimetric studies

Theranostic applications of Lutetieum-177 in radionuclide therapy Tapas Das, Sharmila Banerjee*, Thematic Issue on Lu-177 Radiopharmaceuticals: Current Radiopharmaceuticals, 9, 2016, 94-101.

New Developments : Prostate Cancer Detection and Treatment

⁶⁸Ga-PSMA-11 for detection

- *PSMA* = *Prostate specific membrane antigen*
- High potential for the detection of small recurrent PCa lesions
- > Early detection in patients
- ➢ High accumulation in small metastases
- Rapid clearance from background tissue

¹⁷⁷Lu-PSMA-617 for treatment

- PSMA-617 has the highest binding affinity to PSMA receptors reported till date
- Radiotherapy with ¹⁷⁷Lu-PSMA-617 in prostate cancer patients have shown high promise in initial studies (*First time* reported only in 2015)

68Ga-PSMA-11

¹⁷⁷Lu-PSMA-617

⁶⁸Ga/¹⁷⁷Lu Theranostic pair for prostate cancer management developed and used in RMC

⁶⁸Ga-PSMA PET/CT Scan started on a regular basis in RMC after RPC approval in April 2017

¹⁷⁷Lu-PSMA Therapy in Metastatic Castrate Resistant Prostate Carcinoma (mCRPC)

⁶⁸Ga-PSMA PET-CT in a patient of metastatic
Prostate Carcinoma with raised serum PSA level
280 patients so far

¹⁷⁷Lu-PSMA in a patient of metastatic prostate carcinoma80 therapies till date after RPC approval in April 2017

¹⁷⁷Lu-based radionuclide therapy provided in RMC

Radiopharmaceutical	Used Since	Number of Patients	Cost
¹⁷⁷ Lu-DOTATATE for neuroendocrine cancer	February 2013	2300	Rs. 10,000/- per patient dose Vs. Rs. 1.5 L per patient dose
¹⁷⁷ Lu-PSMA	Since April 2017	85 patients	Rs. 25,000-30,000 Vs. 1.25-2.00 L in private centres

Approved ¹⁷⁷**Lu-based agents from BARC**

LU-2:

- ➢ sterile, pyrogen-free, clinical grade ¹⁷⁷LuCl₃
- ➢ specific activity >20 Ci/mg adequate for formulation of receptor based radiopharmaceuticals.

LUK-1 :

➤ EDTMP cold kits (to be used as ¹⁷⁷Lu-EDTMP in bone pain palliation

LUM-1:

- \succ ¹⁷⁷Lu-EDTMP as a ready-to-use injectible
- □ ¹⁷⁷Lu-DOTATATE for NET
- □ ¹⁷⁷Lu for radiation synovectomy
- □ ¹⁷⁷Lu-PSMA for castrate resistant prostrate cancer

¹⁷⁷Lu radiopharmaceuticals in clinical use

Product	Target	Biological carrier	Application
¹⁷⁷ Lu-CC-49	Tumor associated antigen (TAG-72)	Murine monoclonal antibody specific to tumor associated glycoprotein 72 (TAG 72) MoAb	Colon, ovarian, adenocarcinoma
¹⁷⁷ Lu-J591	Prostate specific membrane antigen	PSMA antigen	Prostate cancer
¹⁷⁷ Lu-Rituximab	CD 20-MoAb	Chimeric mouse-human monoclonal antibody	Non-Hodgkin's lymphoma
¹⁷⁷ Lu-DOTATATE Lutathera [®]	Somatostatin receptors (sub-type 1-5)	Peptide-DOTATATE	Neuroendocrine cancer
¹⁷⁷ Lu-EDTMP	Skeletal metastases	Ethylenediaminetetramethylen e phosphonic acid	Metastatic bone pain palliative

Summary

¹⁷⁷Lu- is a gold mine- relatively less explored till recently

- Various possibilities making use of widely different targeting molecules
- Therefore wide range of applicability- Theranostic potential to be explored for application in personalized medicine
- Suitability as the most potential radioisotope in therapy of cancer other than that of the thyroid
- ✤Immense potential of ¹⁷⁷Lu is available within India

Emergence and present status of Lu-177 in targeted radiotherapy: The Indian scenario., **Sharmila Banerjee**, Tapas Das, Sudipta Chakraborty and Meera Venkatesh , Review Article : **Radiochim. Acta, 100**, 2012, 115-126.

Lutetium-177 Therapeutic Radiopharmaceuticals–Linking Chemistry, Radiochemistry and Practical Applications Sharmila Banerjee, M. R. A. Pillai* and F. F. (Russ) Knapp, Jr. Chem. Rev. 115, 2015, 2934-2974.

Thank You