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Background

Perturbative QED α = 1/137

Perturbative QCD (asymptotic freedom) αs ≈ 1/8

Photos from nobelprize.org
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Beyond Perturbation Theory

Many phenomena of QCD require nonperturbative
prowess

Confinement
Meson and Baryon Masses
Decay constants: fπ, fK , fD, etc.
Semileptonic form factors, e.g., D → πlν

Extraction of CKM matrix elements
Nucleon structure functions
Quark-gluon plasma

Distinguishing new physics from SM physics

Theories such as technicolor and other approaches to
dynamical symmetry breaking

Recently there has been considerable progress
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QCD and Standard Model Parameters
11 of the ≈ 18 parameters of the standard model are
related to quarks

Six quark masses: u, d, s, c, b, t

Strong coupling constant: αs

Four parameters describe CKM matrix: λ, A, ρ and η
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2008 Physics Nobel Prize

Makoto Kobayashi (L) and Toshihide Maskawa (R) on
September 26, 2001.

KEK photo from nobelprize.org
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2008 Physics Nobel Prize

Makoto Kobayashi (L) and Toshihide Maskawa (R). Is
this after winning the prize? They don’t look that much
happier.

KEK photo from nobelprize.org
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Ratio Plot
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Ratio Plot

By sharing with FNAL, HPQCD and UKQCD [ PRL 92, 0022001

(2004)]

Future of Lattice Calculations with Staggered Quarks, TIFR, 12/21/10 S. Gottlieb – p. 8/13



High Precision Results (2004)
MILC dynamical configurations have allowed a major
breakthrough in high precision lattice calculations

With FNAL, HPQCD and UKQCD calculations we
calculated 9 quantities to 1–3% accuracy

The PRL describing this work has resulted in significant
publicity:

CERN Courier

Fermilab Today

Nature

Physics Today

Science

See physics.indiana.edu/̃ sg/milc.html
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Control of Systematic Errors

• To carry out a simulation we must select certain physical 
parameters:

• lattice spacing (a) or gauge coupling (β)

• grid size (Ns3 × Nt )

• sea quark masses (mu,d , ms , mc)

• To control systematic error we must:

• take continuum limit

• take infinite volume limit

• extrapolate in light quark mass; can use physical s quark 
mass
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Asqtad Program

• Since 1999, MILC has been generating ensembles of 
configurations with three flavors (up, down, strange) of 
dynamical staggered quarks.

• Six lattice spacings: 0.18, 0.15, 0.12, 0.09, 0.06, 0.045 fm

• Strange quark mass approximately at physical value

• Degenerate u and d down to 0.1 or 0.05 strange mass

• Many results summarized in RMP 82, 1349 (2010).  

• About 25,000 configurations publicly available (>40 ensembles)
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Map of Ensembles

• octagons have physical strange quark mass, crosses lighter 
strange quark mass
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HISQ Program

• Highly Improved Staggered Quark (HISQ) action developed by 
HPQCD/UKQCD (Follana et al., PRD 75, 054502)

• Two levels of smearing reduce taste symmetry breaking

• We now include a dynamical charm quark

• Quark loop effects in gauge action known to 1-loop order

• We are using larger volumes than with asqtad

• We do a better job of tuning strange quark mass

• Eventually plan to run at physical up and down quark masses

• arXiv:1004.0342 for initial HISQ scaling study

8
8



Taste Symmetry Breaking

• Pion taste splittings 
with asqtad or HISQ 
(boxed) dynamical 
quarks.

• ml = 0.2 ms

• splittings about 3 times 
smaller with HISQ

• line shows expected 
slope
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Rooting

• To deal with fermion doubling problem on lattice, staggered 
quark calculations use rooting.

• With recent increase in precision, revival of concerns that rooting 
could lead to incorrect results, even in continuum limit.

• Theoretical work by Shamir, Bernard, Golterman, Sharpe; Adams

• Numerical work by Durr, Hoelbling, Wegner; Follana, Hart, 
Davies

• Support the conclusion that rooting is a valid procedure.

• Reviews: Sharpe (LATʼ06), Kronfeld (LATʼ07), Goltermann 
(QCHSʼ08)

• Also RMP 82, 1349 (2010). [χtop , nr =0.28(2)(3) ]
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Results
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• MILC Collaboration has studied a number of properties of light 
quark hadrons

• spectrum

• decay constants 

• topology

• quark masses

• Fermilab Lattice/MILC Collaborations have done heavy-light 
studies

• decay constants

• semileptonic decay form factors

• heavy hadron spectrum

• Other groups have done additional studies on asqtad configs.

• See RMP 82, 1349 (2010) for results and references.
12
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Rho Mass

• Using r1 from static 
quark potential to set 
the scale, we see that 
the rho mass has 
much smaller a 
dependence with 
HISQ than with 
asqtad.
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Nucleon Mass

• Similar effect is 
observed for nucleon.

• The long purple curve 
shows the continuum 
limit of asqtad data.

• Based on formulae of 
Jenkins (ʼ92); Bernard, 
Kaiser & Meissner 
(ʼ93).
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Topological Susceptibility

• Its value depends on 
taste singlet pion 
mass.

• HISQ both reduces 
taste breaking and 
susceptibility, moving 
point left and down.

• Continuum topological 
susceptibility depends 
on sea quark content.

• arXiv:1003:5695,1004.0342
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Summary of Hadron Spectrum

• Summary of continuum 
limit of asqtad spectrum 
results.

• States marked with 
diamond used to set quark 
mass or lattice spacing.

• For onium plot difference 
from spin averaged 1S 
mass.

• Details in RMP (2010), 
PDG (2008)
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Onium Spectrum

T. Burch et al., PRD81, 034508, 2010

asqtad: blue=0.09fm; green=0.12fm; orange=0.15 fm; 
red=0.18fm
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Kaon Decay Constant
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1.15 1.2 1.25

MILC

HPQCD

NPLQCD

ALV

RBC/UKQCD

fK/f

PACS-CS

(preliminary)

fK / fπ

• From the RMP article.

• See Hoelbling 
Latticeʼ10 review for 
update that includes 
new BMW, ETMC 
(2+1+1), PACS-CS, 
RBC/UKQCD, etc.  
(next slide).
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Review of simulations Error assessment Summary

FK/Fπ Summary

1.15 1.2 1.25 1.3 1.35

N
f
 = 2+1+1

N
f
 = 2+1

 (MILC)

N
f
 = 2+1

ETM ’10

NPLQCD ’06

HPQCD/UKQCD ’07

MILC ’10

RBC/UKQCD ’10

PACS-CS ’09

BMW ’10

ALV ’08

PACS-CS ’10

QCDSF ’10

Ch. Hoelbling (Wuppertal) Hadron spectrum and light pseudoscalar decay constants

20



Future
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Short Term

• The asqtad ensembles have enabled many physics studies.

• The Fermilab Lattice/MILC Collaborations have quite a few 
configurations yet to be analyzed for multiple projects.

• Completion of this work will take another 1-2 years.

• We are also adding electromagnetic effects (quenched U(1)).

• At the same time, we will be generating new HISQ ensembles 
and gearing up for analysis of them as initial scaling study is very 
promising.
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Longer Term

• We plan HISQ ensembles with a=0.15, 0.12, 0.09, 0.06 and 
0.045 fm.

• We will not cover as wide a range of light quark mass as before:

• ml = 0.2 ms, 0.1 ms, and 0.04 ms (physical value)

• Expect 1000 configurations per ensemble.

• This program will require sustained petascale resources such as 
NCSAʼs Blue Waters (Power 7) and ALCFʼs Mira (BG/Q).
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Taste Symmetry Expectations

• Anticipated pion 
spectrum in MeV for 
future ensembles.

• Leftmost ensemble is 
in production now.

• Taste breaking can be 
reduced to a 10-20% 
effect.

0.06 fm, 
ms/10

0.06 fm, 
ms/27

0.045fm, 
ms/27

π5

π05 , πi5

πij , π0j

π0 , πi

πS

220 135 135

225 143 139

231 152 144

235 159 147

239 164 149
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Decay Constant Outlook

% Errors

Quantity

fDs

fD

fDs /fD

fBs

fB

fBs/fB

Now ~1 year ~3-5 yrs.

3.5 1.8 0.6

4.3 2.2 0.7

1.7 0.9 0.2

3.1 1.7 0.9

4.0 2.0 1.0

1.8 0.9 0.3

HISQ 
valence 
& sea

Fermilab 
valence b; 
HISQ sea
& light 
valence
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Concluding Remarks

• Based on success of the asqtad program and the initial scaling 
results with HISQ, I would say that the future of calculations with 
dynamical staggered quarks is bright.

• New, more powerful computers will play a large role.

• We hope that some algorithmic improvements will also play a 
role.

• For heavy-light work, the OK action (Oktay & Kronfeld) may be 
important for b-quark calculations.

• We will continue to make configurations available.
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