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Black Hole thermodynamics

Black holes are solutions to Einstein’s equations characterized by an
event horizon.

Classically, signals from behind the horizon cannot reach an
asymptotic observer.

Quantum mechanically, they radiate like a hot body.

One can assign thermodynamic quantities like temperature and
entropy to a black hole based purely on its gravitational properties
Bekenstein [’72]; Hawking [’75]
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Black Hole Entropy

Area law Bekenstein [’72]; Hawking [’75]

SBH =
A

4G
. (1)

In a consistent quantum theory of gravity, there must be a statistical
interpretation of black hole entropy in terms of underlying microstates.

This is a universal requirement for a theory of quantum gravity, that
must hold for all black holes in all phases of the theory.

For a theory under construction such as string theory, a useful
strategy in such a situation is to focus on such universal properties,
and try to verify/falsify the theory in controllable examples in a
controllable phase.
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Schwarzschild black hole
http://casa.colorado.edu/∼ajsh/astr2030 06
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Reissner-Nordstrom black hole Extremal RN black hole
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Supersymmetric phases of string theory

Supersymmetric black holes

Focus on black hole entropy in the zero temperature limit ⇒
supersymmetric, extremal black holes.

These black holes are stable objects of the theory.

The number of supersymmetric states do not change when the
coupling is varied.

Strategy: microscopic

Specify an ensemble of states with charges Qi in string theory. These
charges are carried by the fundamental objects of string theory i.e.
strings, branes, monopoles, . . .

gs controls the gravitational force. When gsQi � 1, these objects
exert a weak gravitational force, and one can describe the fluctuations
as a weakly coupled field theory.

Enumerate these microstates d(Qi ) and compute the statistical
entropy Sstat = log(d).
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Strategy: macroscopic

For gsQi � 1, the backreaction is strong, and the correct description
is as solutions to the low energy effective theory i.e. general relativity
coupled to matter fields.

Black hole solution to the effective action carrying charges {Qi}.
Weak curvatures at the horizon for Qi � 1. Measure its
thermodynamic entropy SBH .

In a large class of examples, for a BPS black hole with charge vector Qi ,
the Bekenestein-Hawking entropy agrees with the logarithm of the
degeneracy of the corresponding quantum microstates in the
thermodynamic limit. Strominger & Vafa [1996]

log(d(Qi )) =
A(Qi )

4
+ O(1/Qi ) . (2)

Sameer Murthy (TIFR) Exact BH quantum entropy April 12, 2011, TIFR 9 / 38



Strategy: macroscopic

For gsQi � 1, the backreaction is strong, and the correct description
is as solutions to the low energy effective theory i.e. general relativity
coupled to matter fields.

Black hole solution to the effective action carrying charges {Qi}.
Weak curvatures at the horizon for Qi � 1. Measure its
thermodynamic entropy SBH .

In a large class of examples, for a BPS black hole with charge vector Qi ,
the Bekenestein-Hawking entropy agrees with the logarithm of the
degeneracy of the corresponding quantum microstates in the
thermodynamic limit. Strominger & Vafa [1996]

log(d(Qi )) =
A(Qi )

4
+ O(1/Qi ) . (2)

Sameer Murthy (TIFR) Exact BH quantum entropy April 12, 2011, TIFR 9 / 38



Early successful example Strominger & Vafa [1996]

Five dimensional BPS Black hole carrying four types of charges
(Q1,Q5, p, `) in type IIB string theory on K 3× S1

SBH =
A

4G
= 2π

√
Q1Q5p − `2 , (3)

d(Q1,Q5, p, `) given by the number of excitations of a certain chiral
two dimensional SCFT with central charge 6Q1Q5, L0 = p and J0 = `:

d(Q1,Q5, p, `) = exp(2π
√

Q1Q5p − `2) + · · · . (4)
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p Q1Q5 ` d(Q1Q5, p, `) log(d) SBH

1 1 0 5424 8.59 6.28

2 2 0 2540544 14.74 12.57

3 3 0 1254480000 20.95 18.85

3 3 1 991591800 20.71 18.59

3 3 2 483665920 20.00 17.77

3 3 -1 991591800 20.71 18.59

3 3 -2 483665920 20.00 17.77

log(d)
Qi→∞−→ 2π

√
Q1Q5p − `2 = SBH .
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Questions

This beautiful approximate agreement raises important questions:

What exact formula is (2) an approximation to?

Do black holes know about finite size effects?

Can we systematically compute these corrections to the gravitational
entropy formula, in a 1/Q expansion, and perhaps even exactly for
arbitrary finite values of the charges?

log(d(Q)) =
A(Q)

4
+ O(1/Q) , (5)

?
= log(W (Q)) .
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Aim

In these two talks, I shall report on the progress made in the last few
years towards answering these questions.

In particular, for a class of examples in superstring theory, under some
reasonable assumptions, one can now compute W (Q) exactly.

Main objective: Compute W (Q) and compare with d(Q).

Based on

Atish Dabholkar, João Gomes, S.M., “Quantum Black Holes, Localization,
and the Topological String,” arXiv:1012.0265.

Atish Dabholkar, João Gomes, S.M., “Localization and exact holography,”
to appear.

Atish Dabholkar, S.M. and Don Zagier, “Quantum Black Holes, wall crossing
and mock modular forms” in preparation, partly published as lectures notes
at ICTP school on modular forms and applications, March 2011.
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Finite size effects and testing quantum gravity

The leading Bekenstein-Hawking entropy is too universal since it
follows from the Einstein-Hilbert action which is the leading low
energy effective action in all phases.

Finite size effects depend on the phase (compactification) under
consideration which governs the higher derivative terms in the
effective action. They thus provide a sensitive probe of short distance
degrees of freedom.

One can hope to learn more about the microscopic degrees of freedom
of quantum gravity, effective actions in string theory, nonperturbative
functional integral of quantum gravity, exact holography.

Analogous to how one might study the specific heat of metals to
deduce whether electrons or phonons are the relevant degrees of
freedom in different phases.
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An extension of the Bekenstein-Hawking formula

For black holes in a semi-classical theory of gravity described by a
local Lagrangian density L, the black hole entropy is given by
Wald[1994]; Iyer & Wald [1994]; Jacobson, Kang, & Myers [1993]

SWald = −2π

∫
H

dd−2x
√

h
∂L

∂Rµνρσ
εµνερσ . (6)

When

Sgrav = SEH =
1

8πG

∫
d4x
√

g R , (7)

SWald =
1

4G
ABH = SBH . (8)

The Wald entropy has been computed for BPS black holes in N = 2
supergravity, and then compared successfully with microscopic
predictions of string theory. Cardoso, de Wit, Kappelli, Mohaupt [2000]
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BPS black hole (Q1, Q5, p, `) A. Castro, S. M.; N. Banerjee [2008]

Recall that the microstate degeneracies are those of a particular
SCFT with c = 6Q1Q5, L0 = p, and J0 = `.

The SCFT admits powerful (modular) symmetries which makes it
possible to estimate the degeneracy of states beyond the leading
Cardy approximation.

One has
Smicro = S0

micro + S1
micro + · · ·

with
S0

micro(Q1,Q5, n) = 2π
√

Q1Q5p − `2

and S1
micro given by a transcendental function, whose beginning values

are as follows:
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p Q1Q5 ` d(Q1Q5, p, `) log(d) S0
micro S0

micro + S1
micro

1 1 0 5424 8.59 6.28 8.12

2 2 0 2540544 14.74 12.57 14.40

3 3 0 1254480000 20.95 18.85 20.69

3 3 1 991591800 20.71 18.59 20.46

3 3 2 483665920 20.00 17.77 19.76

3 3 -1 991591800 20.71 18.59 20.46

3 3 -2 483665920 20.00 17.77 19.76

S0
micro + S1

micro = 2π
√

Q1Q5p − `2
(
1 +

3

2p

)
+ O(1/p2)
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Example: Type IIB string theory on K3× S1

Low energy effective action of Gravity+Gauge+Scalars (I = 1, . . . 23)

Sgrav =
1

8πG

∫
d5x
√

g

(
−R − GIJ ∂aM I ∂aMJ

−1

2
GIJ F I

ab F Jab + cIJK AI
a F J

bc F K
de ε

abcde

)
. (9)

Four derivative corrections governed by mixed gauge-gravitational
Chern-Simons term

δSgrav = c2I εabcdeAIa Rbcfg Rde
fg , (10)

and its supersymmetric completion. Hanaki, Ohashi, Tachikawa [2006]

Parameters GIJ , cIJK , c2I are given by the geometric data of K 3.
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BPS black hole (Q1, Q5, p, `) A. Castro, S. M.[2008]

Using this higher derivative Lagrangian and the Wald formula, one
gets a formula for the corrected entropy of the black hole

SWald = 2π
√

Q1Q5p − `2
(
1 +

3

2p

)
+ O(1/p2) (11)

in the regime Q1Q5 →∞, p finite.

This agrees with the analytic expansion of S0
micro + S1

micro in the same
regime.

The macroscopic and microscopic entropies also agree in other ranges
of large but finite charges.
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Good amount of progress in this area

This kind of agreement has been found for all 1/4-BPS black holes in a
class of N = 4 string theories in four and five dimensions.

New exact microscopic degeneracy formulas have been found.

Estimation methods for these formulas have been developed, mainly
using methods of number theory and automorphic form theory.

Efficient methods to compute the Wald entropy for the effective
Lagrangians of the different string theories have been developed.

Cardoso, de Wit, Mohaupt, Sen, Sahoo, Banerjee, David, Jatkar, Dabholkar, Gomes, Larsen, Kraus, Davis, Castro,

S.M., Pioline, Cheng, Gaiotto, Strominger, Yin, Shih, Verlinde, Govindarajan, Narayan, Nampuri, Denef, Moore,

Mukherjee, Mukhi, Nigam, Dijkgraaf, Verlinde, Manschot, Gritsenko, Nikulin . . .
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Quantum corrections

Wald entropy can incorporate the corrections to Bekenstein-Hawking
entropy from all higher-derivative local terms in the effective action.

But one should really use the 1PI quantum effective actions which
include in general nonanalytic and nonlocal terms.

These terms are in many cases essential for duality invariance.

We need

A manifestly duality covariant formalism that generalizes Wald
entropy to be able to discuss the finite size effects systematically.

An IR regulator consistent with the symmetries of the theory.

Such a generalization has been proposed in the recent work of Sen
[2008]. We will now review this definition of exact quantum entorpy.
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Crucial ingredient: AdS2 space

Three dimensional Lorentzian space labelled by (x , y , z)

ds2 = dx2 − dy2 − dz2 . (12)

Two dimensional space embedded in this three-dimensional space

x2 − y2 − z2 = −a2 .

Hyperbolic space with radius a, SO(2, 1) isometry.

(x = a sinh η cosh t , y = a cosh η , z = a sinh η sinh t) gives

ds2 = a2(dη2 − sinh2 η dt2) .

r = cosh η ⇒

ds2 = a2
( dr2

r2 − 1
− (r2 − 1)dt2

)
r ≥ 1.
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Appearance of AdS2

Intuition that the degrees of freedom of a black hole live on (or
inside) the horizon.

All known supersymmetric black holes develop a universal AdS2 factor
in the near horizon geometry.

Time translation symmetry gets enhanced to SO(2, 1).

Assume this is always the case, partially proven.
Figueras, Kunduri, Lucietti, Rangamani
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Outline

1 Introduction and idea of exact black hole entropy

2 Gravitational origin of finite size effects

3 Holography and quantum entropy

4 Gravitational quantum entropy

Sameer Murthy (TIFR) Exact BH quantum entropy April 12, 2011, TIFR 26 / 38



AdS/CFT and extremal black holes

AdS/CFT correspondence relates a quantum gravitational theory in
AdSd+1 to a conformal field theory CFTd .

Obtained by focussing on the geometry of the near horizon region of
an extremal black brane solution. The dual CFT is obtained as the IR
limit of the fluctuations of the brane configuration.

For d = 1, there should be a CFT1 dual to the AdS2 gravitational
theory, living on the boundary of AdS2.

CFT1 naturally identified in string theory with the IR limit of the
quantum mechanics which describes the brane configuration making
up the black hole – this is a complicated system of branes intersecting
in internal dimensions.
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Particularities of AdS2/CFT1

Generically, the brane fluctuations has a collection of degenerate
ground states separated from excited states by a mass gap.

Contrast with higher dimensions where there can be massless modes
with long wavelength fluctuations.

This is consistent with the fact that Lorentzian AdS2 only supports
zero energy excitations. Any finite energy excitation destroys the
boundary conditions of AdS2.

The partition function is the trace over the CFT , which is simply the
number of ground states. (Microstate degeneracy).

By the rules of the AdS/CFT correspondence, this partition function
should equal a functional integral over the AdS2. (Macroscopic
quantum entropy).
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Two special features of AdS2

1. Choice of Ensemble

In two dimensions Coulomb potential grows at the boundary instead
of falling. Hence this growing mode must be held fixed and the
constant mode can fluctuate.

Ar = 0 , Aθ(r)
r→∞−→ er + c . (13)

By Gauss law, fixing e means that we are working in the fixed charge
sector. Hence, the natural ensemble from the perspective of the AdS2

boundary conditions is the microcanonical ensemble.

Contrast with higher dimensional instances of the AdS/CFT
correspondence where the constant mode is held fixed.
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Two special features of AdS2

2. Index = Degeneracy

AdS2 has SU(1, 1) symmetry. If there are at least four unbroken
supersymmetries, the closure of the algebra implies SU(1, 1|2)
superalgebra.

Hence the horizon has an SU(2) spherical symmetry.
e.g.: Supersymmetric black holes in four dimensions do not rotate.
Microcanonical ensemble ⇒ J = 0.

If J is a generator then microstates associated with the horizon are
invariant.

Tr [(−1)J ] = Tr [1] . (14)

As a result, index equals degeneracy. Sen [’08, ’09], Dabholkar, Gomes, S.M., Sen [’10].
i.e. we can compare the functional integral W (Qi ) for the degeneracy
with the microscopic index d(Qi ).
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AdS2/CFT1 and exact quantum entropy

Consider a black hole with charge vector (q, p). The quantum
entropy is defined by a Euclidean functional integral over all field
configurations which asymptote to AdS2.

For a theory with some vector fields Ai and scalar fields φa, we have
the fall-off conditions

ds2
0 = v∗

[(
r2 + O(1)

)
dθ2 +

dr2

r2 + O(1)

]
,

φa = ua
∗ + O(1/r) , Ai = −i e i

∗(r − O(1))dθ .

Magnetic charges are fluxes on the S2, data of the theory.
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Definition of quantum entropy

W (q, p) =

〈
exp

[
− i qi

∫ 2π

0
Ai dθ

]〉finite

AdS2

.

The constants v∗, e
i
∗, u

a
∗ which set the boundary conditions of the

functional integral are determined purely in terms of the charges by the
attractor mechanism.
The quantum entropy is thus purely a function of the charges (q, p).

The action in the functional integral suffers from an infrared divergence
due to infinite volume of the AdS2. To obtain a well-defined functional
integral one must regulate and renormalize. Holographic renormalization.
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Renormalized functional integral

Put a cutoff at a large r = r0. Locality of the effective Lagrangian +
the attractor mechanism implies that the bulk effective action has the
form

Sbulk = C0r0 + C1 + O(r−1
0 ) ,

with C0,C1 independent of r0.

The linear divergence can then be removed by a boundary
counter-term corresponding to a boundary cosmological constant.
There could be more general boundary terms in principle, but the
they are not needed in the supersymmetric examples.

With this prescription, in the semi-classical limit one obtains

W (q, p) ∼ exp[Swald(q, p)] .
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Concrete objectives of the quantum entropy program

Our main goal is to put these formal definitions to use in concrete
examples:

Compute W (q, p) for arbitrary finite charges by evaluating the
functional integral of string field theory on the AdS2 background.

Compute d(q, p) from bound state dynamics of branes and check if it
equals W (q, p) computed above.

First example of exact holography.
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1 Introduction and idea of exact black hole entropy

2 Gravitational origin of finite size effects

3 Holography and quantum entropy

4 Gravitational quantum entropy
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Evaluating the formal expression for W(q,p) by doing the string field
theory functional integral is of course highly nontrivial.

It may seem too ambitious to try to evalute the functional integral of
full string field theory on the black hole background.

It turns out that using localization techniques one can go surprisingly
far and reduce the functional integral to an ordinary integral.

With enough supersymmetry, it seems possible to in fact evaluate
both d(q, p) and W (q, p) exactly.
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Idea of localization

The functional integral runs over all the bosonic and fermionic fields
of the theory.

Supersymmetry pairs up the fluctuations of the massive modes and
these cancel out of the path integral.

The integral thus localizes to an integral over a finite number of
massless modes.

Still left with an integral over a finite number of fields with a
non-trivial potential for these fields.
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Tomorrow’s plan

Explain the technique of localization to evaluate supersymmetric
functional integrals exactly.

Apply this to the gravity functional integral over AdS2 to get an exact
expression for W (Qi ).

Compare the macroscopic answer W (Qi ) with the microscopic d(Qi )
in a simple example.

Discuss more complicated situations where there are other
gravitational solutions which contaminate the black hole functional
integral. This is related to a problem called wall-crossing which we
solve using some interesting techniques from number theory.
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