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Exact quantum entropy

Macroscopic and microscopic pictures of black holes in string theory.
Supersymmetric black holes = collection of zero energy states.

Microscopic picture gives exact counting formula d(q, p) for the
degeneracy of these states as a function of the charges.

The classical entropy of a black hole agrees with the saddle point
approximation for d(q, p) in the large charge limit.

Perturbative finite size corrections can be understood as inclusion of
local higher derivative corrections in the effective action.

The exact macroscopic quantum entropy W (q, p) is defined as a
gravitational functional integral over asymptotically AdS2 field
configurations.
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Main goal

Compute W (q, p) for arbitrary finite charges by evaluating the
functional integral of string field theory on the AdS2 background.

W (q, p) =

〈
exp

[
− i qi

∫ 2π

0
Ai dθ

]〉finite

AdS2

.

Compute d(q, p) from bound state dynamics of branes and compare
with W (q, p) computed above.

This can be considered as the first example of exact holography in the
AdS2/CFT1 context.
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Main example

Half-BPS states in N = 4 string theory in four dimensions

These states are specified by two charges (n,w).

Can be represented as BPS excitations of a fundamental heterotic
string on T 6 with winding w and momentum n. The degeneracy
depends only on the T-duality invariant N = nw . Dabholkar & Harvey [1989]

String sees 8 transverse spacetime dimensions + 16 internal
oscillators = effectively 24 free fields.

How many ways of distributing energy N in 24 types of oscillators?

Z(τ) = e−2πiτ
∞∏

n=1

(1− e2πinτ )−24 ≡ 1

∆(τ)
=

1

η24(τ)
,

d(N) =

∮
dτ e−iπNτ Z(τ)

N→∞−→ e4π
√

N + · · · . (1)
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Half-BPS small black hole solution

The ensemble of half-BPS states above corresponds to a black hole
with two charges n and w in four dimensions.

Classically, this black hole has a singular horizon with zero area and
would appear to have zero entropy. However, higher curvature
corrections to the supergravity action correct the solution.

The corrected solution keeping the leading F-type four-derivative term
develops a nonsingular horizon with finite string scale area and the
geometry has an AdS2 factor Dabholkar, Kallosh, Maloney [2004].

The leading Wald entropy of this small black hole is SWald = 4π
√

nw .

We will assume that the geometry continues to have an AdS2 factor
even after including all higher-derivative corrections in order to
evaluate W (n,w).
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N = nw d(N) log d(N) 4π
√

N log Ĩ13(4π
√

N)

1 24 3.17 12.56 3.94

2 324 5.78 17.77 6.23

3 3200 8.07 21.76 8.31

4 25650 10.15 25.13 10.24

17 6599620022400 29.51 51.81 28.87

18 21651325216200 30.70 53.31 30.03

19 69228721526400 31.86 54.77 31.16

20 216108718571250 33.00 56.19 32.28
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Hardy-Ramanujan-Rademacher expansion

Due to its modular symmetries, the degeneracy admits an exact expansion

d(N) =
∞∑

c=1

K`(N,−1; c)

(
2π

c

)14

Ĩ13(
4π
√

N

c
)

where

Ĩ13(z) =
1

2π

∫ ε+i∞

ε−i∞

1

t14
et+ z2

4t dt,

is a modifield Bessel function of index 13, and

K`(N,−1; c) =
∑

d∈(Z/cZ)∗

exp(
2πidN

c
) · exp(

−2πid−1

c
).

is a sum of phases called the “Kloosterman sum”.
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Evaluation of the quantum entropy in string theory

Evaluating the formal expression for W (q, p) by doing the string field
theory functional integral is of course highly nontrivial.

We first integrate out the infinite tower of massive string modes and
massive Kaluza-Klein modes to obtain a local Wilsonian effective
action for the massless supergravity fields.

String theory provides a finite, supersymmetric, and consistent cutoff
at the string scale. The functional integral with such a finite cut-off
and a Wilsonian effective action will be our starting point.

Our task is then reduced to evaluating a functional integral in
supergravity.
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Even this supergravity functional integral is too hard to solve by presently
available techniques. We now proceed in two steps:

Step I: Solve a simpler supergravity problem using localization

We first consider a simpler problem of evaluating the functional integral in
a reduced theory with N = 2 off-shell supergravity consisting of a gravity
multiplet, nv + 1 vector multiplets but no hyper multiplets.

Step II: Lift this back to the full string theory

We then discuss how these results can be used to evaluate the original
functional integral in the N = 4 string theory with a specific effective
action, including various nonperturbative contributions from orbifolds.
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Functional integral in N = 2 off-shell supergravity

The main advantage of the off-shell formalism is that the
supersymmetry transformations are specified once and for all and do
not need to be modified as one modifies the action with higher
derivative terms.

Consequently, the localizing solutions that we will describe are
universal and do not depend upon the form of the physical action.

Field content: Weyl multiplet which includes graviton, and nv + 1
vector multiplets

XI =
(
X I ,ΩI

i ,A
I
µ,Y

I
ij

)
, I = 0, . . . , nv .

Here X I is a complex scalar, AI
µ a vector field, and Y I

ij are an SU(2)
triplet of auxiliary scalars.
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Action and black hole solution

When the action contains only F-type terms, it is completely specified
by a single prepotential F (X I ) which is a meromorphic function of its
arguments and obeys the homogeneity condition:

F (λX I ) = λ2F (X I ) . (2)

The fields in the near horizon region are

ds2 = v∗

[
−(r2 − 1)dt2 +

dr2

r2 − 1

]
+ v∗

[
dψ2 + sin2(ψ)dφ2

]
,

F I
rt = e I

∗, F I
ψφ = pI sinψ, X I = X I

∗ , Y I
ij = 0 .

The values of the constants (e I
∗,X

I
∗ , v∗) that appear in this solution

are determined in terms of the charges (qI , p
I ) by the supersymmetric

equations of motion (attractor equations).
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Symmetries

The near-horizon geometry AdS2 × S2 has an SU(1, 1|2) symmetry.

This contains the bosonic subgroup SU(1, 1)× SU(2). Conformal
symmetry of AdS2 generated by {L, L±}, and rotational symmetry of
S2 and is generated by {J, J±}.

In addition, there are 8 fermionic symmetries G ia
r , (i , a, r = 1, 2).

These obey the commutation relations of the N = 4 superconformal
algebra in two dimensions.

In this theory, we want to compute

Ŵ (q, p) =

〈
exp[−i qi

∮
θ
Ai ]

〉finite

AdS2

. (3)
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Localization Witten[88, 91], Duistermaat & Heckmann [82], Schawarz & Zaboronsky [95]

Consider a supermanifold M with an integration measure dµ. Let Q be an
odd (fermionic) vector field on this manifold satisfying two requirements:

Q2 = H for some compact bosonic vector field H,

The measure is invariant under Q, in other words divµQ = 0.

We would like to evaluate an integral of some Q-invariant function O

I :=

∫
M

dµO e−S.

To evaluate this integral using localization, one first deforms the integral to

I (λ) =

∫
M

dµO e−S−λQV ,

where V = (Ψ,QΨ). Ψ runs over all fermions of the theory, so V is a
fermionic, H-invariant function.
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The integral I (λ) is independent of λ because

d

dλ

∫
M

dµO e−S−λQV =

∫
M

dµO QV e−S−λQV = 0 ,

This implies that one can perform the integral I (λ) for any value of λ
and in particular for λ→∞.

Treating 1/λ as ~, one can evalute the functional integral
semiclassically. The semiclassical approximation is exact.

The functional integral localizes onto the critical points MQ of Q.
We shall refer to as these solutions QΨ = 0 as localizing solutions.

I =

∫
MQ

dµQ O e−S , (4)

with a measure dµQ induced on the submanifold by the original
measure.
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Application to supergravity

In our case, M is the field space of off-shell supergravity, S is the
off-shell supergravity action with appropriate boundary terms, O is the
supersymmetric Wilson line.

We need to pick a subalgebra of the full supersymmetry algebra
discussed above, whose bosonic generator is compact. The generator

Q = G++
+ + G−−− (5)

squares to 4(L− J) which is the generator of a compact bosonic
symmetry as desired.

With this choice for Q, we have to solve for

QΨ = 0 . (6)

subject to the AdS2 boundary conditions.
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Off-shell supersymmetry and 1/2-BPS solutions

We will assume that the metric fields are not excited in the off-shell
solution.

We thus look for BPS solutions purely in the vector multiplet sector,
keeping the background AdS2 geometry:

0 = δΩi = 2 /DX εi +
1

2
εijFµνγ

µνεj + Yij ε
j ,

where εi is the supersymmetry parameter.

Most general solution:

X I = X I
∗ +

C I

cosh(η)
, Y I1

1 = −Y I2
2 =

2C I

cosh(η)2
, F I

µν = F I
µν ∗ .
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We will assume that the metric fields are not excited in the off-shell
solution.
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Localizing 1/2-BPS instanton Solution

The scalar fields X I in the vector multiplets are no longer fixed at the
attractor values X I

∗ but have a nontrivial position dependence in the
interior of the AdS2.

The scalar fields “climb up” the potential. The Q supersymmetry is
still maintained because some auxiliary fields also get nontrivial
position dependence.

The real parameters {C I} are the collective coordinates of the
localizing instantons. The infinite-dimensional functional integral
localizes onto a finite number of ordinary bosonic integrals over {C I}.

To obtain the integrand over this localizing integral, one must
substitute this solution into the physical action and extract the finite
part as a function of the collective coordinates {C I}.
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The N = 2 supergravity action is:

Sbulk = (−i(X I F̄I − FI X̄
I )) · (−1

2
R) +

[
i∇µFI∇µX̄ I

+
1

4
iFIJ(F−I

ab −
1

4
X̄ IT ij

ab εij)(F−abJ − 1

4
X̄ JT ij

ab εij)

− 1

8
iFI (F

+I
ab −

1

4
X ITabij ε

ij)T ij
ab εij −

1

8
iFIJY

I
ijY

Jij − i

32
F (Tabij ε

ij)2

+
1

2
iFbAĈ − 1

8
iFbAbA(εikεjl B̂ij B̂kl − 2F̂−abF̂

−
ab)

+
1

2
i F̂−abFbAI

(F−I
ab −

1

4
X̄ IT ij

ab εij)−
1

4
i B̂ijFbAI

Y Iij + h.c.
]

− i(X I F̄I − FI X̄
I ) · (∇aVa −

1

2
V aVa −

1

4
|Mij |2 + DaΦi

αDaΦα
i ) .
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Renormalized action

After the renormalization described yesterday, one obtains a
remarkably simple form for the finite renormalized action Sren

Sren(φ, q, p) = −πqIφ
I + F(φ, p)

with φI := e I
∗ + 2iC I and F given by

F(φ, p) = −2πi

[
F
(φI + ipI

2

)
− F

(φI − ipI

2

)]
,

where e I
∗ are the attractor values of the electric field.

Sameer Murthy (TIFR) Exact BH quantum entropy April 13, 2011, TIFR 22 / 38



Evaluation of the Wilson line

The Wilson line expectation value in supergravity takes the general
form

Ŵ (q, p) =

∫
MQ

e−πφ
I qI +F(φ,p) Zdet [dφ]µ

The factor Zdet is the one-loop determinant of the quadratic
fluctuation operator around the localizing instanton solution.
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Application of formalism to our main example

Quantum entropy of 1/2-BPS black holes

The N = 4 string theory in four dimensions has one N = 4 gravity
multiplet + 22 vector multiplets.

The effective action for the F-type terms is governed by the
prepotential

F (X ) = −1

2

X 1

X 0

23∑
a,b=2

CabX
aX b − X 1

X 0
.

where Cab is the intersection matrix for K3.

The small black hole has qA = (n, 0, 0, · · · , 0) and
pA = (0,w , 0, · · · , 0).
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Quantum entropy of 1/2-BPS black holes

Then we have:

Ŵ (q, p) =

∫
[dφ0dφ1

23∏
a=2

dφa] M(φ,w) e
−πnφ0−4π w

φ0 +π
2

w
φ0 Cabφ

aφb

.

It is a good guess that the determinant factor in the N = 4 theory is
unity.

Assuming that the measure is the one induced by the supergravity
theory, we get (after one contour rotation and some Gaussian
integrations):

Ŵ (q, p) =

∫ ∞
0

dS

S14
exp

(πnw

S
+ 4πS

)
= Ĩ13(4π

√
nw) .
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Outline

1 Recap of main objectives

2 Macroscopic evaluation of the quantum entropy

3 A universal structure for the gravity path integral

4 New issues – contaminating solutions and wall-crossing

5 Conclusions and future outlook
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Perturbative and non-perturbative corrections

We saw that the exact microscopic degeneracy for the 1/2-BPS black
hole has an expansion of the form:

Ω(Q) =
∞∑

c=1

exp

(
2π
√

Q2

c
+ s

(c)
1 log(Q2) +

1√
Q2

s
(c)
2 ...

)
. (7)

This structure holds much more generally, whenever the black hole
descends from a black string wrapped around a circle B. Pioline, S.M. [2009].

We saw that the functional integral over all matter fluctuations with a
fixed background AdS2 geometry effectively sums up all perturbative
corrections.

In general, there could be other saddle point geometries approaching
AdS2 asymptotically.
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Semiclassical interpretation

We found a family of smooth solutions to the semiclassical theory
labelled by c ≥ 1 acting as an orbifold on the original AdS2 geometry.
S.M., B. Pioline; Banerjee, Jatkar, Sen.

They have degeneracy exp(2π
√

Q2/c), they are all asymptotically
AdS2, but differ in the interior.

The AdS2 is quotiented, and there is an accompanying shift in one of
the internal circles so that the whole geometry is smooth.

These solutions account for the subleading terms in the Rademacher
expansion of the small black hole partition function.

The Kloosterman sum has a natural interpretation from the Wilson
lines in the orbifold structure.
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Do the microstates really become a black hole?

Formulation of microscopic partition functions in flat space at weak
coupling involves a representation of a generic charged state as a
collection of strings, branes, momentum...

Assumption – at strong coupling, this configuration gravitates and
forms a black hole.

However, there are other solutions in gravity with same charges which
contribute to the total degeneracy (Multi-centered black hole bound
states).

Can one characterize the partition function of single centered black
holes ?

In general, this will break the symmetries of the theory.
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Moduli dependence of solutions and wall-crossing

The zero modes of the scalar fields can take any value at infinity,
these are collectively called the moduli.

The single centered black hole solution exist everywhere in moduli
space.

The multi-centered solutions only exist in regions of moduli space
bounded by co-dimension one surfaces (walls).

On crossing these walls, the multi-centered black holes decay, while
the single centered black holes are immortal.

This can be used to characterize the single centered black holes.
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Modular symmetries of the partition function

In string theory, the partition function quite generally has a modular
(SL(2,Z)) symmetry.

The black hole can be thought of as momentum excitations of an
effective string wound around a circle. This has an associated
near-horizon AdS3 geometry.

Indeed the full partition function is a modular form, and the Fourier
coefficients agree with the black hole degeneracy to good
approximation.

At strong gravitational coupling, not all of the excitations of the
string form the black hole. Some of the excitations form
multi-centered black hole bound states.
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Symmetry broken and restored

We would like to remove the contributions from the multi-centered
black hole, and keep only the single centered contribution that is
constant over moduli space. This destroys the modular symmetry of
the function – potentially disastrous!

However, we show that the partition function for single centered black
holes is a mock modular form. A. Dabholkar, S.M., D. Zagier,

ψm(τ, z) = ψBH
m (τ, z) + ψmulti

m (τ, z)

ψBH
m can be completed to a modular partition function ψ̂BH

m by adding
a specific non-holomorphic function. The completion obeys the
equation

τ
3/2
2

∂ψ̂BH
m (τ, τ)

∂τ
=

√
m

8πi

p24(m + 1)

η(τ)24

∑
` mod (2m)

ϑm,`(τ)ϑm,`(τ, z) .
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Summary of Technical Results

Localization of the functional integral

The full functional integral of string field theory on AdS2 localizes
onto the submanifold MQ of critical points of Q, a specific
supersymmetry.

We have obtained an analytic expression for a family of nontrivial
complex instantons as exact solutions to the off-shell equations of
motion. These instanton solutions are completely universal and
independent of the form of the physical action.

Exact Quantum Entropy

For the small 1/2-BPS black hole in the N = 4 theory, this
reproduced the leading Bessel function of the microscopic theory.

The exact quantum entropy has the form W (q, p) =
∑∞

c=1 Wc(q, p).
where the subleading terms come from summing over orbifold
solutions of the theory.
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Caveats and open technical problems

One-loop determinants need to be evaluated. This is straightforward
in principle, but could be computationally hard in the general case.

We have ignored hyper multiplets. The off-shell supersymmetry
transformations of the vector multiplets do not change by adding
hypers. So our localizing instantons will continue to exist. There
could however be additional localizing solutions that excite the hyper
multiplet.

D-terms may contribute. This can be systematically taken into
account in this formalism. The solution remains unchanged, the
renormalized action may change.
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Lessons learnt

Finite size effects do have a meaning in gravity. Ensemble is
important, can be determined by the classical gravity problem.

General structure of functional integral of quantum gravity, inclusion
and meaning of subleading saddle points.

Clues about non-renormalization theorems of supergravity.

Example of exact holography – Organization of microstates in gravity.

Mathematical structures – modular symmetries can be used very
effectively in organization of the gravity functional integral. Perhaps
they are also important for a deeper reason.
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Future directions and program

Black holes with less supersymmetry, many interesting directions to
follow here. Interesting moduli space dynamics, entropy enigmas, . . .

Higher dimensional holography and dynamics. Very good approximate
notion of locality here. AdS3 may be a good hunting ground, many
puzzles which may yield to these techniques and ideas.

Deeper relations to mathematics – mock modular nature of black
holes.
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