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Quantum Hall Plateaus
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Why is R so accurately measurable ?
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An answer

VorLuME

49, NUMBER 6 PHYSICAL REVIEW LETTERS 9 Aueust 1982
Quantized Hall Conductance in a Two-Di ional Periodic P
D. J. Thouless, M. Kohmoto,®’ M. P. Nightingale, and M. den Nijs
Department of Physics, U ity of is Seattle, Washi 98195
(Received 30 April 1982)
The Hall conductance of a two-dimensional electron gas has been studied in a uniform
magnetic field and a periodic subsirate potential . The Kubo formula is written in a
form that makes apparent the quantization when the Fermi energy lies in a gap. Explicit
expressions have been obtained for the Hall conductance for both large and small U/hw, .
PACS numbers: 72.15.Gd, 72.20. Mg, 73.90.+b
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VOLUME 71, NUMBER 22 PHYSICAL REVIEW LETTERS 29 NOVEMBER 1993

Chern Number and Edge States in the Integer Quantum Hall Effect

Yasuhiro Hatsugai
Department of Physics, Massachusetts Tnstitute of Techuology, 77 Massachusetts Avenue, Cambridge, Massachuscts 02199
and Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi Minato-ku, Tokyo 106, Japan
(Received 12 July 1993)

Hall conductance of the filled jth band is

2
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Tight binding models
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Reciprocal lattice basis

Fourier transform,

éa : é»b = Oab
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Hence k; ~ ks + 27, = the Brillouin zone is always a
topologically a torus.




Momentum space wave functions

— i
H= | 3 k) (k) (K

The single particle hamiltonian is an Ng x Ng matrix at every k.

h(K)apus(k) = en(k)ug (k)
e"(k), n=1,..., Ng form the energy bands.
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The phase that launched a thousand scripts

» The wave functions, u”(k) and e*"(¥)u"(k) represent the
same physical state.

» The phase picked up by the wave-function when the state
is Adiabatically transported defines a
"Pancharathnam-Berry" connection:

ko an ;
Un(k1) N e’fk12 Al (k)dk Un(kg)
1

Alk) = 5 ((W(k) (k) — hec)

Fii(k) = 0,A7 (k) — 9;A7 (k)

The Pancharathnam-Berry curvature field, Fj(k) is
independent of the phase convention used to define the
eigenstates.




The Chern invariant

» For 2-d systems, the integral of F over the Brillouin zone is
an integer invariant, the Chern number.

1
v = g | Pk aF]K)

> e—hszhern Number=Quantized Hall Conductance

Thouless, Kohmoto, Nightingale and den Nijs, (1982)

» Chern Number=Number of chiral edge channels

Hatsugai, (1993)




The Chern number as a winding number

» At every k we have a Ng level system.
eg. Ng = 2 we have a 2 level system.

h(k) = &(k) + %Ae(k)ﬁ(k) 7

» The physical states at every k form a CPy,_4 manifold.
eg at Ng = 2, we have the Bloch sphere (CP; = S»).

0(k)
_ cos =~
U(k) - < sin@e"‘ﬁ(k) )

» The wavefunctions for every band define a map from the
Brillouin zone to the space of physical states, CPp_1.




The Chern number as a winding number

» When d = 2, we have maps from T, — CPp,_1. These are
topologically equivalent to maps from S, — CPp,_1 since
all loops in CPy,_4 can be shrunk to points.

» The winding number of the map is exactly the Chern
number.

vE = i1/d2kh-81f7><82ﬁ
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Physical Effects: Anomalous velocity

Semiclassical equations of motion for wave packets:

. 0

5= gpoelk)+ Fi(kk

; 0 .

ki = eg V(X +eBj(x)x
I

Ganesh Sundaram and Qian Niu, Phys. Rev. B23, 14915 (1999);

F. D. M. Haldane, PRL 93, 20662 (2004)

Leads to anomalous hall conductivity:

2
oH = —¢;iFi(k
H /(k)<e,: 2h! i)

If the Fermi level is in a gap and all the bands are either filled or .
empty, then the hall conductivity is quantised.




Explicit models on the honeycomb lattice




Graphene

h(k) = o*px(k)+ opy(K) + M

_ ( M Px — ipy >
px+ipy  —M

px(k) = t(1+ coskj + coskp)
py(k) = t(sinky —sinky)




Graphene

k =Ki+q,
p0 = V2 (axqe+ ayqy) + oM
FK) = 4 T i
k=Kx+q,
P = V20— ayq) + oM
Fi(k) = 1 M
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The Haldane model

h(k) = o*px(k) +a’py(k) + BM(K)

px(k) = t(1+ cosky + coskp)

py(k) = t(sinky —sinky)

M(k) = M+ A(sinky +sinkp + sin(—ky — k2))

» M>> A, v=0,M<< A, v==+1. Topological transition
fromv =0tov = 41 phase at M = 3?.

» Magnetic field not necessary for non-zero Chern number.
Other time reversal symmetry breaking terms can also
induce it.

» Bands can exchange units of Pancharathnam-Berry flux
when they touch at Dirac points.




The Haldane model
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Topological Insulators: Theory

Prediction of Insulating materials with metallic surfaces

k endi
PRL 95, 146802 (2005) PHXSICAL, REVIEW LETIERS 30 SEPTEMBER 2005

Z, Topological Order and the Quantum Spin Hall Effect

C.L. Kane and E.J. Mele

RAPID COMMUN
PHYSICAL REVIEW B 75, 121306(R) (2007)
Topological invariants of time-reversal-invariant band structures

J. E. Moore'? and L. Balents®

Three dimensional topological invariants for time reversal invariant Hamiltonians and
the three dimensional quantum spin Hall effect

Rahul Roy

arXiv:cond-mat/0607531v3 [cond-mat.mes-hall] 21 Jul 2006

k end
PRL 98, 106803 (2007) PHYSICAL REVIEW LETTERS s

Topological Insul s in Three Di

Liang Fu, C.L. Kane, and E.J. Mele




Topological Insulators: Real materials

nature

physics

ARTICLES

PUBLISHED ONLINE: 10 MAY 2009 | DOI: 10:1038/NPHYS1270

Topological insulators in Bi,Ses, Bi,Te; and Sb,Tes
with a single Dirac cone on the surface

Haijun Zhang', Chao-Xing Liu?, Xiao-Liang Q#*, Xi Dai', Zhong Fang' and Shou-Cheng Zhang®*

Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such
systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to
scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of
topologically protected states in two-dimensional and three-dimensional band insulators with large spin-orbit coupling. So
far,the only known three-dimensional topological insulator is By, which i an aloy with complex surhm states. Here, we
present the results of first-principles electronic st of the layered, rystals Sb,Te;, SbySes,
Bi,Te; and Bi;Se;. Our calculations predict that su,u;, BizTex and BiySe, are topological insulators, whereas SbaSes i ok
These topological insulat consisting of a single Dirac cone at the I" point. In addition,
we predict that Bi,Se, has a topologically non-trivial energy gap of 0.3eV, which is larger than the energy scale of room
temperature. We further present a simple and unified continuum model that captures the salient topological features of this

class of materials.
ature
physics

Observation of a large-gap topological-insulator
class with a single Dirac cone on the surface

LETTERS

PUBLISHED ONLINE:10 MAY 2009 | DO 103038/NPHYS1274

Y.Xia"?, D. Qian'3, D. Hsieh'?, L. Wray', A. Pal', H.

and M. Z. Hasan'26*

Recent experiments and theories have suggested that strong.
spin-orbit coupling effects in certain band insul
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to describe interacting quas

¥ topologial st with  single Diec ¢

with a superconductor can form the most elementary unit

for porforming aut-tclrset quantum computaton . Hore we

present an angle-resolved copy stu

that reveals the first observation of such a topological state
of matter featuring a single surface Dirac cone realized in

the naturally occurring BizSe, class of materials. Our results,

, A.Bansil*, D. Grauer®, Y. S. Hor®, R. J. Cava®

work as a matrix material to observe a variety of topological
quantum phenomens.

“The topological-insulator character of BiSb™ led us to inves.
tigate the altcrnative Bi-based compounds (X =S, Te).
The undoped BiySe, i a semiconductor that belongs 1o the class
of themodeatic mateals B, with o rhombobedral crsl
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surements report tha, sthough
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Time reversal in Quantum mechanics

U = & My,
If there is an operator 7 such that,

Ty = e ey,
Then the system is time reversal invariant.

Time reversal for Bloch hamiltonians,

Tu(k)e = (6¥ u*(K))a

oY (K)o = h(—k)

Then system is time reversal invariant




Band Pairs

If=




The 2-d Z> invariant

Consider a system with 2 occupied time reversed bands:

» The total Berry flux carried by them will always be zero.

» If the hamiltonian is smoothly perturbed, maintaining time
reversal invariance, and they touch (h(k) becomes
degenerate), it will always happen at pairs of points
(k, —k).

» Time reversal invariance ensures that the flux exchanged
by bands at these two points is always equal.

» The change of flux in each band is always even and hence
the Chern index of each band modulo 2 is invariant under
smooth time reversal symmetric perturbations.

» in general,

is invariant.



The 2-d Z> invariant
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Consequences at the edge

1
L0
0

=]

C.L. Kane and E.J. Mele PRL 95, 146802 (2005)

» Even number of edge pairs (per edge) for § = 0
Odd number of edge pairs (per edge) for § = 1

» No backscattering for a single pair due to time reversal
symmetry.




The 3-d 4> invariants

Parameterise the 3-d torusby —n < k; < m, i=x,y, z.
» There are many time reversal invariant planes. eg k; = 0, 7.

» The 2-d Z, invariants of these planes are all topological
invariants.

» Of these, there are 4 independent invariants which can be
chosen to be,

5X = 5kX:7r7 (5}/ = 5ky:7r7 62 = 5kZ:7r

00 = Ok,—00k,=r

» If 5o = —1, then the system is called a “Strong topological
insulator".
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Consequences at the surface

4]o:(111)

41011

Liang Fu, C.L. Kane, and E.J. Mele PRL 98, 106803 (2007)

» Even number of surface Dirac cones for § =0
Odd number of surface Dirac cones for § = 1

» Gaplessness for odd number of Dirac points protected by
time reversal symmetry.
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Topological order




FQHE: Partially filled Landau Bands

D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-dimensional magnetotransport in the Extreme
Quantum Limit, Phys. Rev. B 48 (1982} 1559
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Topological order in FQHE

» For v = 1/3: unique ground state on the sphere but 3-fold
degenerate ground state on the torus. In general FQHE
states have a genus dependent degeneracy

» States characterised by gapped, fractionally charged
quasi-particles obeying anyonic statistics.

» Gapless chiral excitations at the edge.

» The longwavelength physics described by topological field
theories (Chern-Simons theories).




Strongly correlated systems

PHYSICAL REVIEW B VOLUME 37, NUMBER 1 1 JANUARY 1988
Gauge theory of high-temperature superconductors and strongly correlated Fermi systems

G. Baskaran and P. W. Anderson
Joseph Henry Laboratories, Department of Physics, Jadwin Hall, Princeton University,
P.0. Box 708, Princeton, New Jersey 08544
(Received 6 July 1987)

Confined
Magnetic ordered

PHYSICAL REVIEW B VOLUME 62, NUMBER 12 15 SEPTEMBER 2000-11

Z, gauge theory of electron fractionalization in strongly correlated systems

T. Senthil and Matthew P. A. Fisher
institute for Theoretical Physics, University of California, Santa Barbara, California 93106—4030
(Received 25 October 1999)




Topological entanglement entropy

ek end
PRL 96, 110404 (2006) PHYSICAL REVIEW LETTERS 24 MARCH 2006

Topological Entanglement Entropy

Alexei Kitaev'? and John Preskill'
'Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125, USA
2Microsoft Research, One Microsoft Way, Redmond, Washington 98052, USA
(Received 13 October 2005; published 24 March 2006)

We formulate a universal chamucnmuon of the many-particle quantum entanglement in the ground
state of a y ordered t medium with a mass gap. We consider a disk in the
plane, with a smooth boundary of length L, large compared to the correlation length. In the ground state,
by tracing out all degrees of freedom in the exterior of the disk, we obtain a marginal density operator p
for the degrees of freedom in the interior. The von Neumann entropy of p, a measure of the emanglemem
of the interior and exterior variables, has the form S(p) = aL — y + - - -, where the ellipsis represents
terms that vanish in the limit L — co. We show that —7 is a universal constant characterizing a global
feature of the entanglement in the ground state. Using topological quantum field theory methods, we
derive a formula for v in terms of properties of the superselection sectors of the medium.

DOL: 10.1103/PhysRevLett.96.110404 PACS numbers: 03.65.Ud, 03.67.Mn, 71.10.Pm, 7343.Nq

—
PRL 96, 110405 (2006) PHYSICAL REVIEW LETTERS 24 MARCH 2006

Detecting Topological Order in a Ground State Wave Function

Michael Levin and Xiao-Gang Wen

Dey of Physics, Institute of Tecl ; Cambridge, 02139, USA
(Received 25 October 2005; published 24 March 2006)

A large class of topological orders can be understood and classified using the string-net condensation
picture. These topological orders can be characterized by a set of data (N, d;, Fii%, 8;;,). We describe a
way to detect this kind of topological order using only the ground state wave function. The method
involves computing a quantity called the “topological entropy” which directly measures the total
quantum dimension D = ¥'d?.

DOI: 10.1103/PhysRevLett.96.110405 PACS numbers: 11.15.—q, 03.65.Ud, 11.25.—w, 71.10.—w




Topological order

Topological order realised in quantum Hall liquids and quantum
spin liquids.
Characterised by:

v

Genus dependent degeneracy of all states
Emergent gauge fields

Quasi-particles with fractional quantum numbers and
statistics

Related to “pattern of quantum entanglement" ?

v

v

v
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Exactly solved models with topological order




Kitaev’'s honeycomb model

Alexei Kitaev,“Anyons in an exactly solved model and beyond", cond-mat/0506438, Annals of Physics.
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Conserved quantities

[ ® ® = 5
2] o ‘. ° » E
° “ . " &
® ‘ e @
° 5 %
[ ] (9 5 ”
o ° % . é
Wo = ofo)oiofolos
W, Hl =0="[Wp, Wp]
Wg = 1

Conserved quantities have the properties of magnetic fluxes of
a Z, gauge theory




Jordan-Wigner transformation for S = }

m</
Jordan-Wigner fermions:
&in = O i My = O i,

{in:Eimt = 200m = {MNips N}
{&insminy =0




Majoranisation

Jordan-Wigner Path

v.

Local because tails cancel

local because local
L}

H=Je> i&&+dy > i6i&+Jz Y igiugg
iy (i (i)
Uy = inmj
Hamiltionian of Majorana fermions, &;, interacting with static 2,
gauge fields, uj, in the gauge,

Uiy = Uy =1




Generalisations

Spin-1/2 Kitaev Model generalises to any lattice constructed out of:

Generalises to any lattice using Clifford Algebras

PHYSICAL REVIEW D 68, 065003 (2003)

Xiao-Gang Wen*

Quantum order from string-net condensations and the origin of light and massless fermions
Department of Physics, Massachuseuts Instinute of Technology, Cambridge, Massachuseus 02139, USA

(Received 24 February 2003; published 3 September 2003)
Xp = =) X

(125)

VIII. QED AND QCD FROM A BOSONIC MODEL
ON A CUBIC LATTICE




Topological order in the Kitaev Model

» Fermionic “spin-1/2" excitations.

» Non-abelian anyonic excitations in a particular phase:
Unpaired Majorana fermions bound to a vortex (flux
defect).

» 4-fold degeneracy on a torus corresponding to Z» fluxes
paSSing through the “holes". Saptarshi Mandal PhD thesis




Our work
» Spin liquid: Very short ranged spin-spin correlations.

G. Baskaran, Saptarshi Mandal and R. Shankar, PRL 98, 247201 (2007)
True at all S. Huge classical spin degeneracy: Very much
like frustrated quantum antiferromagnets:
G. Baskaran, Diptiman Sen and R. Shankar, Phys. Rev. B 78 115116 (2008); D. Dhar, Kabir Ramola and
Samarth Chandra Phys. Rev. B

» First order transitions to magnetically ordered phases
(confined phases) when an Ising interaction is added.
Criterion that perturbation does not induce long range
correlations:
Saptarshi Mandal, Subhro Bhattacharjee, Krishnendu Sengupta, R. Shankar and G. Baskaran

» Simple chains where Majorana Fermions can be
manipulated:
Abhinav Saket and S. R. Hassan and R. Shankar, Phys. Rev. B 82, 174409 (2010)

» Creating unpaired Majorana fermions by coupling to an
impurity spin:
Kusum Dhochak and Vikram Tripathi and R. Shankar, Phys. Rev. Lett. 105, 117201 (2010)




Outline

A model with everything !




Proposals for engineered realisations

week ending
VOLUME 91, NUMBER 9 PHYSICAL REVIEW LETTERS 29 AUGUST 2003

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices

L.-M. Duan,' E. Demler,? and M. D. Lukin?
nstitute for Quantum Information, California Institute of Technology, me 107-81, Pasadena, California 91125, USA

*Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 25 October 2002; published 26 August 2003)

Quantum emulation of a spin system with topologically protected ground states using
superconducting quantum circuits

J. Q. You,"? Xiao-Feng Shi,""? Xuedong Hu>* and Franco Nori*?
! Department of Physics and Surface Physics Laboratory (National Key Laboratory), Fudan University, Shanghai 200433, China
*Advanced Study Institute, The Institute of Physical and Chemical Research (RIKEN), Wako-shi 551-0195, Japan
7 Department of Physics, University ot Buffalo, SUNY, Buffalo, NY 14260-1500, USA
4Center for Theoretical Physics, Physics Department,
Phys. Rev. B 81, 014505 (2010) University of Michigan, Ann Arbor, MI 48109-1040, USA
(Dated: December 3, 2009)

A Lrces JouRnat EXPLoRinG
T FRONTITRS OF Pirvsics Oetiber 508

EPL, 84 (2008) 20001 wuw . epljournal .org
doi 10.1209/0295-5075/84/20001

Reproducing spin lattice models in strongly coupled
atom-cavity systems

A. Kay' and D. G. ANGELAKIs®*®)

! Centre for Quantum Computation, DAMTP, Centre for Mathematical Sciences,
Wilberforce Road, Cambridge CB3 0WA, UK, EU

2 Science Department, Technical University of Crete - Chania, Crete, Greece, 73100, EU

3 Centre for Quantum Technologies, National University of Singapore - 2 Science Drive 3, Singapore 117543

Univ

ty of Cambridge




The Demler et. al. Model
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H = Y tclg+hetd> t (Clo*Ci+he)
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S.R. Hassan, S. Goyal and R. Shankar (IMSc.)

David Senechal and A -M. Tremblay (Sherbrooke)




0= ity o )

Y(k) =t (1 +efe 4 e*"’“>+t’ (UZ +o¥ele aye*"’“) = ¥1(—k)
Att =0,
h(k) = o’ h*(—k)d¥

Att=0,
h(k) = Bo? h*(—k)d¥ 3

(o 7)

At t, t' # 0, time reversal symmetry is broken.




Eigenvalues: At =0.5




Eigenvalues: At =1.0
The bands stop overlapping at At = v6 — v/3 = 0.717




Chern Numbers




Pancharatnam-Berry field:At = 0.1




Pancharatnam-Berry field:At = 1




Chiral edge states




U > 0: Variational Cluster Perturbation Theory

» Choose a cluster hamiltonian H’ with variational
parameters approximating the effect of the environment.
(We choose a 6 site cluster and the hopping parameters as
the variational parameters).

» Solve the cluster hamiltonian exactly and the compute the
self energy functional, Q;[G].

» Find the saddle point of Q; to determine G.




The Greens Function

U=0.1, dt=1, mu=-.841




The Greens Function

U=0.3, dt=1, mu=-1.066

u]
]
I
ut



Conclusions

» The model proposed by Duan, Demler and Lukin to realise
the Kitaev hamiltonian in cold atom systems has time
reversal non-invariant spin-orbit couplings except at t' = 0
(graphene) and t =0

» For certain parameter regimes, this model has four
non-overlapping bands that carry non-zero Chern
numbers. This implies a non-zero angular momentum of
the ground state at quarter filling. Thus we will have a
rotating condensate in a static optical lattice.

» The gap at quarter filling presists in a region in the U — At
space. There seem to be two phases, A quantum Hall
state and a Chiral Metal.

» At t = 0, half filling we have a topological insulator.

» FQHE states at large U, partially filled bands ?? (Next
problem)
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