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Quantum Hall Plateaus

R =
25812.807557(18)

n
Ω

Why is R so accurately measurable ?



An answer



Tight binding models

H =
∑
iα jβ

c†iαh(Ri − Rj)αβcjβ

Ri =
∑

a

ia~ea, α, β = 1, . . . ,NB

Fourier transform,

ciα =

∫
k

ei~k ·~Ri ckα

Reciprocal lattice basis

~Ga · ~eb = δab

~k ≡
∑

a

ka
~Ga, ~k · ~Ri =

∑
a

iaka

Hence ka ∼ ka + 2π,⇒ the Brillouin zone is always a
topologically a torus.



Momentum space wave functions

H =

∫
k

∑
αβ

c†α(k) h(k)αβ cβ(k)

The single particle hamiltonian is an NB × NB matrix at every k .

h(k)αβun
β(k) = εn(k)un

α(k)

εn(k), n = 1, ...,NB form the energy bands.

cn(k) ≡
NB∑
α=1

(un(k))∗αcα(k)

|GS〉 =
∏

εn(k)<εF

c†n(k)|0〉



The phase that launched a thousand scripts

I The wave functions, un(k) and eiΩn(k)un(k) represent the
same physical state.

I The phase picked up by the wave-function when the state
is Adiabatically transported defines a
"Pancharathnam-Berry" connection:

un(k1) → ei
∫ k2

k1
An

i (k)dk i
un(k2)

An
i (k) =

1
2i

(
(un(k))

†
∂iun(k)− h.c

)
I

F n
ij (k) = ∂iAn

j (k)− ∂jAn
i (k)

The Pancharathnam-Berry curvature field, F n
ij (k) is

independent of the phase convention used to define the
eigenstates.



The Chern invariant

I For 2-d systems, the integral of F over the Brillouin zone is
an integer invariant, the Chern number.

νn =
1

8π

∫
d2k εijF n

ij (k)

I e2

h ×Chern Number=Quantized Hall Conductance
Thouless, Kohmoto, Nightingale and den Nijs, (1982)

I Chern Number=Number of chiral edge channels
Hatsugai, (1993)



The Chern number as a winding number

I At every k we have a NB level system.
eg. NB = 2 we have a 2 level system.

h(k) = ε̄(k) +
1
2

∆ε(k)n̂(k) · ~τ

I The physical states at every k form a CPNB−1 manifold.
eg at NB = 2, we have the Bloch sphere (CP1 = S2).

u(k) =

(
cos θ(k)

2
sin θ(k)

2 eiφ(k)

)

I The wavefunctions for every band define a map from the
Brillouin zone to the space of physical states, CPNB−1.



The Chern number as a winding number

I When d = 2, we have maps from T2 → CPNB−1. These are
topologically equivalent to maps from S2 → CPNB−1 since
all loops in CPNB−1 can be shrunk to points.

I The winding number of the map is exactly the Chern
number.

ν± = ± 1
4π

∫
d2k n̂ · ∂1n̂ × ∂2n̂

= ± 1
4π

∫
d2k F12(k)



Physical Effects: Anomalous velocity

Semiclassical equations of motion for wave packets:

ẋi =
∂

∂ki
ε(k) + Fij(k)k̇j

k̇i = e
∂

∂xi
V (x) + eBij(x)ẋj

Ganesh Sundaram and Qian Niu, Phys. Rev. B23, 14915 (1999);

F. D. M. Haldane, PRL 93, 20662 (2004)

Leads to anomalous hall conductivity:

σH =

∫
ε(k)<εF

e2

2h
εijFij(k)

If the Fermi level is in a gap and all the bands are either filled or
empty, then the hall conductivity is quantised.



Explicit models on the honeycomb lattice



Graphene

h(k) = αxpx (k) + αypy (k) + βM

=

(
M px − ipy

px + ipy −M

)
px (k) = t(1 + cos k1 + cos k2)

py (k) = t(sin k1 − sin k2)



Graphene
k = K1 + q,

h(k) =
t
√

3
2

(αxqx + αyqy ) + βM

Fij(k) =
1

4π
M

(q2 + M2)3/2

k = K2 + q,

h(k) =
t
√

3
2

(αxqx − αyqy ) + βM

Fij(k) = − 1
4π

M
(q2 + M2)3/2



The Haldane model

h(k) = αxpx (k) + αypy (k) + βM(k)

px (k) = t(1 + cos k1 + cos k2)

py (k) = t(sin k1 − sin k2)

M(k) = M + ∆ (sin k1 + sin k2 + sin(−k1 − k2))

I M >> ∆, ν = 0, M << ∆, ν = ±1. Topological transition
from ν = 0 to ν = ±1 phase at M = 3

√
3

2 .
I Magnetic field not necessary for non-zero Chern number.

Other time reversal symmetry breaking terms can also
induce it.

I Bands can exchange units of Pancharathnam-Berry flux
when they touch at Dirac points.



The Haldane model
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Topological Insulators: Theory



Topological Insulators: Real materials



Time reversal in Quantum mechanics

ψ2 = e−iH(t2−t1)ψ1

If there is an operator T such that,

T ψ1 = e−iH(t2−t1)T ψ2

Then the system is time reversal invariant.

Time reversal for Bloch hamiltonians,

T u(k)α = (σy u∗(k))α

if
σyh∗(k)σy = h(−k)

Then system is time reversal invariant



Band Pairs

T un(k) = un̄(−k)

T un̄(k) = −un(−k)

εn(k) = εn̄(−k)

F n
ij (k) = −F n̄

ij (−k)



The 2-d Z2 invariant
Consider a system with 2 occupied time reversed bands:

I The total Berry flux carried by them will always be zero.
I If the hamiltonian is smoothly perturbed, maintaining time

reversal invariance, and they touch (h(k) becomes
degenerate), it will always happen at pairs of points
(k ,−k).

I Time reversal invariance ensures that the flux exchanged
by bands at these two points is always equal.

I The change of flux in each band is always even and hence
the Chern index of each band modulo 2 is invariant under
smooth time reversal symmetric perturbations.

I in general,

δ =

1
2

NB∑
n=1

|νn|

modulo 2

is invariant.



The 2-d Z2 invariant



Consequences at the edge

I Even number of edge pairs (per edge) for δ = 0
Odd number of edge pairs (per edge) for δ = 1

I No backscattering for a single pair due to time reversal
symmetry.



The 3-d Z2 invariants

Parameterise the 3-d torus by −π ≤ ki ≤ π, i = x , y , z.
I There are many time reversal invariant planes. eg ki = 0, π.
I The 2-d Z2 invariants of these planes are all topological

invariants.
I Of these, there are 4 independent invariants which can be

chosen to be,

δx ≡ δkx =π, δy ≡ δky =π, δz ≡ δkz =π

δ0 ≡ δkz =0δkz =π

I If δ0 = −1, then the system is called a “Strong topological
insulator".



(δ0, δx , δy , δz)



(δ0, δx , δy , δz)



Consequences at the surface

I Even number of surface Dirac cones for δ = 0
Odd number of surface Dirac cones for δ = 1

I Gaplessness for odd number of Dirac points protected by
time reversal symmetry.
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FQHE: Partially filled Landau Bands

ν = p
2mp+1 Jainendra Jain



Topological order in FQHE

I For ν = 1/3: unique ground state on the sphere but 3-fold
degenerate ground state on the torus. In general FQHE
states have a genus dependent degeneracy

I States characterised by gapped, fractionally charged
quasi-particles obeying anyonic statistics.

I Gapless chiral excitations at the edge.
I The longwavelength physics described by topological field

theories (Chern-Simons theories).



Strongly correlated systems



Topological entanglement entropy



Topological order

Topological order realised in quantum Hall liquids and quantum
spin liquids.
Characterised by:

I Genus dependent degeneracy of all states
I Emergent gauge fields
I Quasi-particles with fractional quantum numbers and

statistics
I Related to “pattern of quantum entanglement" ?
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Kitaev’s honeycomb model

Alexei Kitaev,“Anyons in an exactly solved model and beyond", cond-mat/0506438, Annals of Physics.

H = Jx
∑
<ij>

σx
i σ

x
j + Jy

∑
<ij>

σy
i σ

y
j + Jz

∑
<ij>

σz
i σ

z
j



Conserved quantities

Wp ≡ σx
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6

[Wp,H] = 0 = [Wp,Wp′ ]

W 2
p = 1

Conserved quantities have the properties of magnetic fluxes of
a Z2 gauge theory



Jordan-Wigner transformation for S = 1
2

The disorder variables:

µil =
∏
m<l

(
σz

im

)
Jordan-Wigner fermions:

ξin = σx
inµin ηin = σy

inµin

{ξin , ξim} = 2δnm = {ηin , ηim}
{ξin , ηim} = 0



Majoranisation

H = Jx
∑
〈ij〉

iξiξj + Jy
∑
〈ij〉

iξiξj + Jz
∑
〈ij〉

iξiuijξj

uij = iηiηj

Hamiltionian of Majorana fermions, ξi , interacting with static Z2
gauge fields, uij , in the gauge,

u〈ij〉 = u〈ij〉 = 1



Generalisations



Topological order in the Kitaev Model

I Fermionic “spin-1/2" excitations.
I Non-abelian anyonic excitations in a particular phase:

Unpaired Majorana fermions bound to a vortex (flux
defect).

I 4-fold degeneracy on a torus corresponding to Z2 fluxes
passing through the “holes". Saptarshi Mandal PhD thesis



Our work
I Spin liquid: Very short ranged spin-spin correlations.

G. Baskaran, Saptarshi Mandal and R. Shankar, PRL 98, 247201 (2007)

True at all S. Huge classical spin degeneracy: Very much
like frustrated quantum antiferromagnets:
G. Baskaran, Diptiman Sen and R. Shankar, Phys. Rev. B 78 115116 (2008); D. Dhar, Kabir Ramola and

Samarth Chandra Phys. Rev. B

I First order transitions to magnetically ordered phases
(confined phases) when an Ising interaction is added.
Criterion that perturbation does not induce long range
correlations:
Saptarshi Mandal, Subhro Bhattacharjee, Krishnendu Sengupta, R. Shankar and G. Baskaran

I Simple chains where Majorana Fermions can be
manipulated:
Abhinav Saket and S. R. Hassan and R. Shankar, Phys. Rev. B 82, 174409 (2010)

I Creating unpaired Majorana fermions by coupling to an
impurity spin:
Kusum Dhochak and Vikram Tripathi and R. Shankar, Phys. Rev. Lett. 105, 117201 (2010)
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Proposals for engineered realisations



The Demler et. al. Model

H =
∑
〈ij〉

t C†i Cj + h.c+
∑
〈ij〉x

t ′
(

C†i σ
xCj + h.c

)
++

∑
〈ij〉y

t ′
(

C†i σ
yCj + h.c

)
+
∑
〈ij〉z

t ′
(

C†i σ
zCj + h.c

)
+U

∑
i

ni↑ni↓

S.R. Hassan, S. Goyal and R. Shankar (IMSc.)

David Senechal and A -M. Tremblay (Sherbrooke)



U = 0

h(k) =

(
0 Σ(k)

Σ†(k) 0

)
Σ(k) = t

(
1 + eik2 + e−ik1

)
+t ′
(
σz + σxeik2 + σye−ik1

)
= Σ†(−k)

At t ′ = 0,
h(k) = σyh∗(−k)σy

At t = 0,
h(k) = βσyh∗(−k)σyβ

β ≡
(

I 0
0 I

)
At t , t ′ 6= 0, time reversal symmetry is broken.



Eigenvalues: ∆t = 0.5



Eigenvalues: ∆t = 1.0
The bands stop overlapping at ∆t =

√
6−
√

3 = 0.717



Chern Numbers



Pancharatnam-Berry field:∆t = 0.1



Pancharatnam-Berry field:∆t = 1



Chiral edge states



U > 0: Variational Cluster Perturbation Theory

I Choose a cluster hamiltonian H ′ with variational
parameters approximating the effect of the environment.
(We choose a 6 site cluster and the hopping parameters as
the variational parameters).

I Solve the cluster hamiltonian exactly and the compute the
self energy functional, Ωt [G].

I Find the saddle point of Ωt to determine G.



The Greens Function



The Greens Function



Conclusions

I The model proposed by Duan, Demler and Lukin to realise
the Kitaev hamiltonian in cold atom systems has time
reversal non-invariant spin-orbit couplings except at t ′ = 0
(graphene) and t = 0

I For certain parameter regimes, this model has four
non-overlapping bands that carry non-zero Chern
numbers. This implies a non-zero angular momentum of
the ground state at quarter filling. Thus we will have a
rotating condensate in a static optical lattice.

I The gap at quarter filling presists in a region in the U −∆t
space. There seem to be two phases, A quantum Hall
state and a Chiral Metal.

I At t = 0, half filling we have a topological insulator.
I FQHE states at large U, partially filled bands ?? (Next

problem)



THANK YOU !
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