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Totally Asymmetric Simple Exclusion Processes

On a one-dimensional lattice of size L.

Each site is either occupied or empty.

Particles hop to the right with rate one whenever. the site on
the right is empty (DDM, DEHP, SD).

Particles hop onto the first site at rate α from the left
reservoir.

Particles hop out of the last site at rate β into the right one.

1 1

Hole

Particle

α β
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Matrix Ansatz

Satisfies the “matrix ansatz” (DEHP).

Let τ be a configuration of the system, an element of {0, 1}L.
The steady state probability of τ is given by

P(τ) =
1

Z
〈W |Xτ1 . . .XτL |V 〉.

Z is the normalization factor

Z = 〈W |(X0 + X1)
L|V 〉.
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Matrix Ansatz

Satisfies the “matrix ansatz” (DEHP).

Let τ be a configuration of the system, an element of {0, 1}L.
The steady state probability of τ is given by

P(τ) =
1

Z
〈W |Xτ1 . . .XτL |V 〉.

Z is the normalization factor

Z = 〈W |(X0 + X1)
L|V 〉.

The matrices and the vectors satisfy the relations

X1X0 = X1 + X0 X1|V 〉 = 1

β
|V 〉 〈W |X0 =

1

α
〈W |,
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Example: L = 2

Z2P(00) = 〈W |X0X0|V 〉
=

1

α2
,

Z2P(01) = 〈W |X0X1|V 〉
=

1

αβ
,

Z2P(10) = 〈W |X1X0|V 〉 = 〈W |(X1 + X0)|V 〉
=

1

α
+

1

β
,

Z2P(11) = 〈W |X1X1|V 〉
=

1

β2
.

Z2 =
α2 + αβ + β2 + αβ(α + β)

α2β2
.
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Densities and Currents

The density at site i is defined to be the probability that site i

is occupied by a particle in the steady state, namely

〈τi〉 =
∑

τ
τi=1

P(τ)

By the matrix ansatz,

〈τi 〉 =
〈W |(X0 + X1)

i−1X1(X0 + X1)
L−i |V 〉

〈W |(X0 + X1)L|V 〉

The particle current towards the right is given by

J = 〈τi (1− τi+1)〉 =
∑

τ
τi=1,τi+1=0

P(τ).
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In the limit of L → ∞ one can compute the leading order
behavior of the density and the current. The current has the
form

J =



























1

4
, for α, β ≥ 1

2 ,

α(1− α), for α < 1
2 , α < β,

β(1− β), for β < 1
2 , β < α,

The density, up to boundary corrections, is

α when α < 1
2 , α < β,

1− β when β < 1
2 , β < α and

1/2 when α, β ≥ 1
2 .
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Phase Diagram

replacements

α

β I
II

III

1
2

1
2

1

1
0
0

The phase diagram for the open TASEP. Region I is the maximal
current phase. Regions II and III are the low and high density

phases respectively. The boundary between II and III represents the
shock line.



Single species TASEP Semipermeable TASEP Equilibrium System Generalizations

Occurence of Shocks

We obtain the density profile ρ(x), x ∈ (0, 1) by considering the
limit

ρ(x) = lim
i=[xL]
L→∞

〈τi〉

On the shock line α = β < 1/2, one finds the density profile to be
linear,

ρ(x) = α+ x(1− 2α).
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Occurence of Shocks

We obtain the density profile ρ(x), x ∈ (0, 1) by considering the
limit

ρ(x) = lim
i=[xL]
L→∞

〈τi〉

On the shock line α = β < 1/2, one finds the density profile to be
linear,

ρ(x) = α+ x(1− 2α).

Question: Where is the shock?
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Second Class Particles

Consider the system on the infinite lattice Z with starting
configuration Bernoulli with density ρ− to the left of the
origin and ρ+ to the right of the origin and ρ− < ρ+. Then
one notices the occurrence of a shock. The shock front moves
with a drift 1− ρ− − ρ+.

A second class particle is one which also tries to move to the
right with rate one, but the hop succeeds only if the site on
the right is empty. The hop for a first class particle succeeds if
the site is either empty or is occupied by a second class
particle.

If we inject a single second class particle (ABL) in the system
(say at the origin), then the second class particle sits at the
location of the shock with high probability. Therefore, a
natural definition of the location of the shock is precisely the
position of the second class particle.
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Two Species TASEP

Consider a TASEP of L sites on the ring (DJLS).

Let τi = 0, 2, 1 if the site i is empty, occupied by a second
class particle, or occupied by a first class particle respectively.
Notice that the number of each type of particle is fixed.

The matrix ansatz holds here too

P(τ) =
1

Z
Tr (Xτ1 . . .XτL) ,

The matrices satisfy

X1X0 = X1 + X0,
X1X2 = X2,
X2X0 = X2. (1)

One can choose X2 = [X1,X0], and even stronger, to be a
one-dimensional projector.
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Factorization

Suppose one conditions on the presence of second class
particles at sites i and j > i . Then, in the grand canonical
ensemble, one finds that the events which depend only on
sites i + 1, . . . , j − 1 are completely independent of events
which depend only on j + 1, . . . , L, 1, . . . , i − 1.

This is a simple mathematical consequence of a representation
of the matrices X0,X1,X2, but is physically not clear.

This same factorization occurs if one takes the limit L → ∞
by conditioning on a second class particle at the origin. Then
events on the positive axis are uncorrelated with events on the
negative axis.
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Semipermeable Two Species TASEP

We consider an open version of the two species TASEP with L

sites.

The restriction is that only first class particles and vacancies
can enter and leave the system (Arita).

Second class particles are constrained to be within the system
and suppose there are n of them. The rates are as before.

First class particle

Second class particle

Hole

α β

111
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Particle Hole Symmetry

Under the interchange

α, β ↔ β, α

τi ↔ τ ′L−i+1 =

{

τi , if τi = 2,
1− τi , if τi = 0, 1,

the system remains invariant. That is

Pα,β(τ) = Pβ,α(τ
′),

and
Zα,β(L, n) = Zβ,α(L, n).



Single species TASEP Semipermeable TASEP Equilibrium System Generalizations

A matrix ansatz also holds for this model

P(τ) =
1

Z (L, n)
〈Wα|Xτ1 . . .XτL |Vβ〉.

The matrices themselves satisfy the same relations (1). We work
with a representation where the matrices are independent of α and
β. This dependence is entirely present in the vectors, with the
action by the matrices given by

X1|Vβ〉 =
1

β
|Vβ〉 〈Wα|X0 =

1

α
〈Wα|.

Further, the representation has the property

X2 = |V1〉〈W1|, (2)

〈Wα|V1〉 = 〈W1|Vβ〉 = 1. for all α, β
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The Representation

X1 =

















1 1 0 0 . .
0 1 1 0
0 0 1 1
0 0 0 1 .
. . .
. .

















, X0 =

















1 0 0 0 . .
1 1 0 0
0 1 1 0
0 0 1 1
. . .
. . .

















.

X2 = X1X0 − X0X1 = [X1,X0] =

















1 0 0 0 . .
0 0 0 0
0 0 0 0
0 0 0 0
. .
. .

















,

〈Wα| =
(

1,

(

1− α

α

)

,

(

1− α

α

)2

, . . .

)

,

(

( ) ( )

)
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The “Partition Function”

Call Z (L, n) the partition function with a slight abuse of
terminology from equilibrium statistical mechanics.
The configuration space is

YL,n = {(τ1, . . . , τL)| τi = 0, 1, 2; τi = 2 for n values of i},
and thus

Z (L, n) =
∑

τ∈YL,n

〈Wα|Xτ1 . . .XτL |Vβ〉.

The partition function can be written (Arita) in the form

Z (L, n) =

L−n
∑

k=0

CL+n−1
L−n−k

1/βk+1 − 1/αk+1

1/β − 1/α
.

where the ballot triangle numbers are

Cm
n =

m − n+ 1

m + 1

(

m + n

n

)

for n = 0, . . . ,m.
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Factorization again

Factorization also holds here because of property (2). The
probability of all n second class particles being at locations
i1, . . . , in is given by

1
Z(L,n) 〈Wα|(X0 + X1)

i1−1|V1〉

×





n−1
∏

j=1

〈W1|(X0 + X1)
ij+1−ij−1|V1〉



 〈W1|(X0 + X1)
L−in |Vβ〉

For example, the probability of having a first class particle at
site i given that the first second class particle is at site j , j > i

is given by

〈Wα|(X0 + X1)
i−1X1(X0 + X1)

j−i−1|V1〉
〈Wα|(X0 + X1)j−1|V1〉

,

independent of the configuration after the jth site.
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Density of First Class particles

It is enough to calculate the density of first class particles to
determine all the densities. The density of holes is got by the
particle hole symmetry and that of second class particles is
got by the fact that the densities sum up to one at each site.
Let ξi be 1 if i is occupied by a first class particle and zero
otherwise.

〈ξi 〉 =































































1

Z (L, n)

L−1
∑

k=n

CL−k−1Z (k , n) if i ≤ n,

1

Z (L, n)

[

L−1
∑

k=i

CL−k−1Z (k , n)

+ Z (i − 1, n)

L−i−1
∑

k=0

CL−i−1
k

(

1

β

)k+1
]

, n < i < L,

Z (L− 1, n)

βZ (L, n)
i = L.
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Here we use the notation

Cn = Cn
n =

1

n + 1

(

2n

n

)

,

for the Catalan numbers.

Notice that the density is constant in the first n sites! This in
itself is quite counterintuitive. If L and n are fairly large, how
can the first class particles at the extreme left“know” that
there are exactly n second class particles in the system?
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Here we use the notation

Cn = Cn
n =

1

n + 1

(

2n

n

)

,

for the Catalan numbers.

Notice that the density is constant in the first n sites! This in
itself is quite counterintuitive. If L and n are fairly large, how
can the first class particles at the extreme left“know” that
there are exactly n second class particles in the system?

But wait, there’s more.
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Exchangeability

In a system of L sites and n second class particles, suppose we
want to calculate the joint distribution of r first class
particles, r < n at site 1 ≤ i1 < i2 < · · · < ir ≤ n.

The steady state probability distribution has a remarkable
property of exchangeability, by which we mean that this joint
distribution is totally independent of i1, . . . , ir and only
depends on r .

This gives a strong constraint on the invariant measure by De
Finetti’s Theorem.
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The proof is by induction on the probability of finding first
class particles at sites i1, . . . , ir , ir+1, . . . , ir+j−1, denoted by
Er (L, n; i1, . . . , ir ; j).

Using the matrix algebra, we show that Er satisfies the
recursion

Er (L, n; i1, . . . , ir ; j) = Er (L, n; i1, . . . , ir ; j + 1)
+Er (L− 1, n; i1, . . . , ir ; j − 1)

We guess an explicit formula for Er by looking at small
systems and show that it satisfies the same recursion and
boundary conditions.
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The Current

The current of first class particles J1 is given, as before, by

J1 = 〈ξi(1− ξi+1)〉,

and the phase diagram is determined by formulas for the current in
the thermodynamic limit

J1 =































1− γ2

4
, for α, β ≥ αc (region I),

α(1 − α), for α < αc , α < β (region II),

β(1 − β), for β < αc , β < α (region III),

where the critical value αc of α and β is

αc =
1− γ

2
and γ =

n

L
.
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The Phase Diagram

We consider a system of size L and take the number of second class
particles to be n = [γL]. We then consider the large L limit. The
phase diagram thus depends on three parameters — α, β and γ.
The cross-section of the phase diagram for fixed γ looks as follows.

α

β

I
II

III

1−γ
2

1−γ
2

1

1
0
0
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Macroscopic Density Profiles

We define the macroscopic density profile ρa(x) for a = 0, 1, 2
as

ρa(x) = lim
n/L→γ
i/L→x
L→∞

〈τa(i)〉, 0 ≤ x ≤ 1.

Here τa(i) is one if site i is occupied by particle of type a and
zero otherwise. As stated before, knowing ρ1(x) determines
the other two by the particle hole symmetry and
∑

a ρa(x) = 1.

For the sake of convenience we will list both ρ0(x) and ρ1(x)
in all regions. We need to define two variables

x0 = 1− γ

1− 2α
, II and II/III boundary,

x1 =
γ

1− 2β
, III and II/III boundary,
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Density profiles in different regions of the phase plane. Note that
x0 is defined only in region II and on its boundaries, and x1 only in

region III and on its boundaries.
Region ρ1(x) ρ0(x)

I αc αc

I/II boundary αc αc

I/III boundary αc αc

x < x1 x > x1 x < x0 x > x0
II α 1− α α
III β 1− β β
II/III boundary (Shock Line) α (= β) linear linear α (= β)
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Profiles for the II/III boundary

On the II/III boundary α = β < αc , the shock line, the profiles
include linear regions:

ρ0(x) =







x0 − x

x0
(1− α) +

x

x0
α, 0 ≤ x ≤ x0,

α, x0 ≤ x ≤ 1

ρ1(x) =







α, 0 ≤ x ≤ x1,
1− x

1− x1
α+

x − x1

1− x1
(1− α), x1 ≤ x ≤ 1.

As explained for the single species TASEP, such a linear profile
occurs in the presence of shocks. In this model there is a constant
region followed by a linear region, which actually occurs because of
two separate shocks.
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The Intuitive Picture

Consider a uniform portion of the system where the first class
particles, second class particles and holes have densities ρ1, ρ2
and ρ0 respectively.

In such a region, the current of first class particles and of
holes will be given by J1 = ρ1(1− ρ1) and J0 = −ρ0(1− ρ0).
The (signed) currents must sum to zero. But we know that
there are no second class particles entering or leaving the
system. Thus J2 = 0. This implies

ρ1 = ρ0 = (1− ρ2)/2 or ρ2 = 0, ρ1 = 1− ρ0.

Therefore in a uniform region either the density of first class
particles equals that of holes or there are no second class
particles. This is exactly what we see in Regions II and III
(Figures (a) and (b)).
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The Coloring Idea

Consider L large and focus on a portion of the system in the
bulk.

Suppose we are colorblind and cannot distinguish between
first and second class particles. Color both of these particles
white and holes black. Then the dynamics that we see is
completely consistent and is in fact the single species TASEP
dynamics defined earlier.

Similarly, if we color second class particles and holes red and
first class particles blue, we see yet another single species
TASEP dynamics.

Notice that this identification fails at the boundaries because
second class particles are forbidden to enter or leave.
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The Fat Shock: Boundary of II/III

We choose α = β < (1− γ)/2. Then, as shown previously both
the white/black and red/blue TASEP will see a shock with a
density α on the left and a density 1−α on the right. The velocity
of both the shock fronts are therefore 1− α− (1− α) = 0.

The second class particles are completely confined between these
two shocks, a region which we call the fat shock.
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The width of the fat shock on the macroscopic scale w is
constrained by there being exactly γL second class particles,

w =
γ

1− 2α
.

This forces the shock fronts of the two TASEPs to move in a
coordinated fashion. Since the right wall of the shock cannot
move to the left of the point x1, the density of first class
particles is constant in the region [0, x1].

Similarly, the left wall of the shock being forced to lie to the
right of x0 ensures that the density of holes in constant in the
region [x0, 1].

Since the average velocity of the shocks is zero, the fat shock
essentially performs a simple symmetric random walk. This
explains the profile on the shock line.
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The Fat Shock: Regions II and III

The generic shock picture is that drawn on Slide 34 , but
starting at value α and ending at value 1− β. Thus the
velocity of the shocks is 1− α− (1− β).

In region II, this velocity is positive and the shock sticks on
the right, Figure (a) on Slide 28.

In region III, this velocity is negative and the shock sticks on
the left, Figure (b) on Slide 28.
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The Fat Shock: Region I and its borders

In region I and its borders, α, β ≥ αc = (1− γ)/2. Thus, the
width of the shock w ≥ 1. This means that the fat shock
spans the entire system.

On the border of region I, we see that the shock exactly fills
up the system and the boundary effects are of order

√
L

(Figure (e) on Slide 28).

In the interior, the shock is much larger than the system and
the boundary effects are considerably smaller, i.e. exponential
(Figure (f) on Slide 28).
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Equilibrium Distribution of Second Class Particles

Since the current of second class particles is zero, we can
expect the second class particles by themselves to form an
equilibrium system.

The TASEP dynamics gives rise in a natural way to a
dynamics on the second class particles with respect to which
the dynamics satisfies the detailed balance condition.

Set

φα(d) = − log(4−dZα,1(d−1, 0)) = − log(4−d 〈Wα|(X0+X1)
d−1|V1〉)

Then the probability that the n second class particles are
located at sites q1, . . . , qn is given by

µ(q1, . . . , qn) =
e−φα(q1)−

∑n
i=2 φ(qi−qi−1)−φβ(L−qn)

4−LZα,β(L, n)
.

where we denote φ1(d) by φ(d).
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The rate at which the ith second class particle moves to site qi + 1
is the probability that site qi + 1 is occupied by a hole

〈W1|X0(X0 + X1)
qi+1−qi−2|V1〉

Z 1,1(qi+1 − qi − 1, 0)
=

e−φ(qi+1−qi−1)

e−φ(qi+1−qi )
, if i < n,

〈W1|X0(X0 + X1)
L−qi−1|Vβ〉

Z 1,β(L− qi , 0)
=

e−φβ(L−qi−1)

e−φβ(L−qi )
, if i = n.

Similarly, the rate at which the ith second class particle moves to
site qi − 1 is the probability that site qi − 1 is occupied by a first
class particle

e−φ(qi−qi−1−1)

e−φ(qi−qi−1)
, if i > 1,

e−φα(q1−1)

e−φα(qi )
, if i = 1.

One can check that the dynamics satisfies detailed balance with
respect to the measure µ. Namely, for any two configurations of
second class particles q and q′,
µ(q)rate(q → q′) = µ(q′)rate(q′ → q).
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Pressure Ensemble

To obtain the properties of the system described by µ in the
thermodynamic limit, L → ∞, n/L → γ, it is most convenient

to consider the pressure or isobaric ensemble πα,β
p,n .

Here, instead of keeping the volume L of the system fixed we
imagine that the right wall is in contact with a reservoir of
pressure p. The value of p is chosen so as to make the
average volume equal to L.

More precisely, we let the position of the right boundary,
which we denote qn+1, fluctuate, and add a term involving the
pressure p to the measure. This yields the probability
distribution in the pressure ensemble:

π(q1, . . . , qn, qn+1) =
e−φα(q1)−

∑n
i=2 φ(qi−qi−1)−φβ(qn+1−qn)−pqn+1

Zα,β(p, n)
.
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The Partition Function

A nice property of the pressure ensemble is that the partition
function Zα,β(p, n) factorizes. In this model, it has a
particularly simple expression

Zα,β(p, n) = Z1(α, p)Z2(p)
nZ1(β, p).

The factors can be written in terms of the variable
z =

√
1− e−p as

Z1(α, p) =
α(1− z)

z + 2α − 1
, Z2(p) =

1− z

1 + z
.

The parameter z is, for fixed values of α and β, constrained
to lie in the range

max{1− 2α, 1 − 2β} ≤ z ≤ 1.
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The Fat Shock: Equilibrium

The fat shock here is the width between the first and last second
class particles — q1 and qn. One checks that

〈q1〉π = − d
dp

logZ1(α) =
α(1 + z)

z(z + 2α − 1)
,

〈qj − qj−1〉π = − d
dp

logZ2 =
1

z
, j = 2, . . . , n,

〈qn+1 − qn〉π = − d
dp

logZ1(β) =
β(1 + z)

z(z + 2β − 1)
.

To compare with the original system, we set 〈qn+1〉π to be the
length of the system L which, in the current formulation, is n/γ.
We then obtain

α(1 + z)

z(z + 2α− 1)
+

n

z
+

β(1 + z)

z(z + 2β − 1)
=

n

γ
.
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Regions of the Phase diagram

We have to choose specific values of the pressure p, or equivalently
z , in order to see the same effects that we see in different regions
of the phase diagram.

Region I (γ > 1− 2α, 1− 2β): When z = γ +O(1/n), the fat
shock is of the order of the size of the system and the first
and last terms are or order one.

Region II (γ > 1− 2α,α < β): When z = 1− 2α+ O(1/n),
the first term is of order n and the other two terms are small.
This means that the fat shock is forced to the right.

Region III (γ > 1− 2β, β < α): When z = 1− 2β + O(1/n),
the last term is of order n and the other two terms are small.
This means that the fat shock is forced to the left.



Single species TASEP Semipermeable TASEP Equilibrium System Generalizations

More General Two-Species Model

Left Bulk Right
SP P SP P

0 → 1 α w(1− az) 1 0 → 0 1 1 1 → 0 β v(1− bz)
0 → 2 0 waz 2 0 → 0 2 w 1 → 2 0 vbz

2 → 1 0 a 1 2 → 2 1 v 2 → 0 0 b

〈W | 〈Wα| 〈Ww | |V 〉 |Vβ〉 |Vv 〉

Rates for permeable (P) and semipermeable (SP) boundary
conditions.
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Matrices and Boundary Vectors

The matrices now satisfy

X1X0 = X1 + X0, X1X2 =
1

v
X2, X2X0 =

1

w
X2,

The boundary vectors depend on whether the boundary is
permeable or semipermeable.

SP:

Semipermeable left boundary: 〈W |X0 =
1

α
〈W |,

Semipermeable right boundary: X1|V 〉 = 1

β
|V 〉.

P: Note the absence of a and b.

Permeable left boundary: 〈W |X0 =
1

w
〈W |, 〈W |X2 = z〈W |,

Permeable right boundary: X1|V 〉 = 1

v
|V 〉, X2|V 〉 = z |V 〉.
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Special Case: Triple Shock

v = 1.

Permeable on the left, semipermeable on the right.

Let α = w
1+wz

, and set α = β < 1/2.

All density profiles are linear:

First class particles: α on the left, 1− α on the right.

Second class particles: (1−2α)(w−α)
w(1−α) on the left, 0 on the right.

Vacancies: α(1−2α+αw)
w(1−α) on the left, α on the right.
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Thank you for your attention!
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