QCD in an external magnetic field

Gunnar Bali

Universität Regensburg

TIFR Mumbai, 20.2.12

Contents

- Lattice QCD
- The QCD phase structure
- QCD in U(1) magnetic fields
- The *B*-*T* phase diagram*
- Summary and Outlook

```
*GS Bali, F Bruckmann, <u>G Endrődi</u>, A Schäfer (Regensburg),
Z Fodor, KK Szabó (Wuppertal), SD Katz (Eötvös Budapest),
S Krieg (FZ Jülich)
arXiv:1111.4956 [hep-lat], JHEP in print,
arXiv:1111.5155, PoS(Lattice 2011) 192.
```

QCD (theory of strong interactions)

$$\mathcal{L}_{QCD} = -rac{1}{16\pilpha_{s}}FF + ar{\psi}_{f}(D + m_{f})\psi_{f}$$

- \longrightarrow asymptotic freedom: $\alpha_s(q) \stackrel{q \to \infty}{\longrightarrow} 0$
- $\xrightarrow{?}$ confinement
- $\stackrel{?}{\longrightarrow}$ chiral symmetry breaking

proton (artist's impression)

Theoretically beautiful but analytical quantitative predictions are very difficult in the region of small momentum transfers (*strong* QCD) !

 \implies computer simulation

Lattice QCD

typical values: $a^{-1} = 1.5-4$ GeV, Na = 1.5-6 fm continuum limit: $a \rightarrow 0$, La fixed infinite volume: $Na \rightarrow \infty$

$$\langle O \rangle = \frac{1}{Z} \int [dU] \, [d\psi] [d\bar{\psi}] \, O[U] e^{-S[U,\psi,\bar{\psi}]}$$

"Measurement": average over a *representative* ensemble of gluon configurations $\{U_i\}$ with probability $P(U_i) \propto \int [d\psi] [d\bar{\psi}] e^{-S[U,\psi,\bar{\psi}]}$

$$\langle \mathbf{O} \rangle = \frac{1}{n} \sum_{i=1}^{n} \mathbf{O}(U_i) + \Delta \mathbf{O} \qquad \Delta \mathbf{O} \propto \frac{1}{\sqrt{n}} \stackrel{n \to \infty}{\longrightarrow} 0$$

Input:
$$\mathcal{L}_{QCD} = -\frac{1}{16\pi\alpha_L}FF + \bar{\psi}_f(D + m_f)\psi_f$$

 $m_p^{\text{lat}} = m_p^{\text{phys}} \longrightarrow a$
 $m_{\text{PS}}^{\text{lat}}/m_p^{\text{lat}} = m_{\pi}^{\text{phys}}/m_p^{\text{phys}} \longrightarrow m_u \approx m_d$

Output: hadron masses, phase diagram, decay constants etc... Extrapolations:

- **(1)** $a \rightarrow 0$: functional form known.
- **2** $N \to \infty$: harmless but computationally expensive.
- **3** $m_q^{\text{lat}} = m_q^{\text{phys}}$ has only very recently been realized.

Pure gauge theory

 $\mathcal{L}_{YM} = -\frac{1}{16\pi \alpha}FF$ Consider lattice of time extent $N_t a = 1/T$ and spatial volume $V = (N_s a)^3$. Order parameter: Polyakov line $\langle P \rangle \sim \exp(-F_a/T)$ Low temperature: $\langle P \rangle = 0$, confinement. High temperature: $\langle P \rangle \propto z, z \in \mathbb{Z}_3$, deconfinement $(V \to \infty)$.

Gunnar Bali (Regensburg)

Magnetic field

Chiral symmetry (breaking)

Global symmetry of the m = 0, $n_f = 3$ QCDliteTM: Ignore $U_V(1)$ symmetry (baryon number conservation) $U_A(1)$ anomaly: $\partial_{\mu}j^5_{\mu} = -\frac{1}{16\pi^2}F * F \longrightarrow$ heavy η' $m = 0 \chi$ -symmetry spontaneously broken at $T < T_c$ (order parameter $\langle \bar{\psi}\psi \rangle$):

 $SU_L(3) \otimes SU_R(3) \longrightarrow SU_V(3)$

8 Nambu-Goldstone bosons!

QCD with masses

(borrowed from O Philipsen arXiv:1111.5370)

Polyakov line and chiral condensate for physical quarks

S Borsányi et al JHEP 1009 (10) 073

 $T_c(\bar{\psi}\psi) = 155(3)(3) \text{ MeV} = 1.95(5) \cdot 10^{12} \text{ K}.$

(Cross-over: other quantities may have different pseudocritical temperatures.) \exists no order parameter but less than one in $2.1 \cdot 10^{21}$ electrically charged particles differ by more than e/6 from a multiple of e!

A possible phase diagram of QCD with chemical potential

Noncentral heavy ion collision

 $(100 \text{ MeV}^2) \approx 1.69 \cdot 10^{18} e\text{G} = 1.69 \cdot 10^{14} e\text{T}.$

Comparison of magnetic fields

The Earths magnetic field	0.6 Gauss
A common, hand-held magnet	100 Gauss
The strongest steady magnetic fields achieved so far in the laboratory	4.5 x 10 ⁵ Gauss
The strongest man-made fields ever achieved, if only briefly	10 ⁷ Gauss
Typical surface, polar magnetic fields of radio pulsars	10 ¹³ Gauss
Surface field of Magnetars	10 ¹⁵ Gauss

At BNL we beat them all!

Off central Gold-Gold Collisions at 100 GeV per nucleon $e B(\tau = 0.2 \text{ fm}) = 10^3 \sim 10^4 \text{ MeV}^2 \sim 10^{17} \text{ Gauss}$

The QCD phase diagram in the *B*-*T* plane

Low energy effective models of QCD predict(ed):

- increasing pseudocritical temperature $T_c(B)$
- increasing strength 1/W(B) Mizher et al 10

Supported by NJL models, large- N_c arguments, low-dimensional models, S-D equations

Gatto et al 11, Johnson et al 09, Alexandre et al 01, Klimenko et al 92,

Other results $(N_f = 2)$:

Decreasing $T_c(B)$ NO Agasian, SM Fedorov PLB 663 (08) 445 Almost constant (Lattice) M D'Elia et al PRD 82 (10) 051501

Magnetic background field on the lattice

Vector potential $A_{\nu} = (0, Bx, 0, 0) \Longrightarrow \mathbf{B} = (0, 0, B)$ Lattice: multiply links U_{ν} with $u_{\nu} = e^{iaqA_{\nu}} \in U(1)$

$$egin{aligned} u_y(n) &= e^{ia^2qBn_x}\ u_x(n) &= 1 & n
eq N_x - 1\ u_x(N_x-1,n_y,n_z,n_t) &= e^{-ia^2qBN_xn_y}\ u_
u(n) &= 1 &
u
eq x,y \end{aligned}$$

The magnetic flux through the x-y plane is constant:

$$\exp\left(iq\int\limits_{F} \mathrm{d}\sigma \mathbf{B}\right) = \exp\left(iq\int\limits_{\partial F} \mathrm{d}x_{\nu} A_{\nu}\right) = e^{ia^{2}N_{x}N_{y}qB}$$

Flux quantization due to the finite volume + boundary conditions:

$$a^2 N_x N_y \cdot qB = 2\pi N_b \qquad N_b \in \mathbb{Z}$$

Flux quantization

Implementation and limitations

- *B* is invariant under $N_b \leftrightarrow N_b + N_x N_y$ (periodicity)
- Lattice field is unambiguous if $0 < N_b < N_x N_y/4$
- Apply quantization for smallest charge q = e/3
- Typical lattice spacings: Maximal B: $qB^{max} = \pi/(2a^2)$ $\sqrt{eB} \approx 1 \text{ GeV} \rightarrow 10^{20} e \text{ Gauss}$
- Typical aspect ratios: Minimal B: $qB^{\min} = 2\pi T^2 (N_t/N_s)^2$ $\sqrt{eB} \approx 0.1 \text{ GeV} \rightarrow 10^{18} e \text{ Gauss}$ Phenomenologically interesting region!

Simulation and observables

• Partition function for three flavors ($\mu_f = 0$ in the simulation)

$$\mathcal{Z} = \int [dU] e^{-eta S_g} \prod_{f=u,d,s} [\det M(q_f \cdot B, m_f, \mu_f)]^{1/4}$$

Observables

$$\bar{\psi}\psi_f = \frac{T}{V}\frac{\partial\log\mathcal{Z}}{\partial m_f}, \qquad \chi_f = \frac{T}{V}\frac{\partial^2\log\mathcal{Z}}{\partial m_f^2}, \qquad c_2^s = \frac{T}{V}\frac{\partial^2\log\mathcal{Z}}{\partial \mu_s^2}$$

• Renormalization: cancel divergences by computing

$$\bar{\psi}\psi_{f}^{r}(B,T) = m_{f}\left[\bar{\psi}\psi_{f}(B,T) - \bar{\psi}\psi_{f}(B=0,T=0)\right]\frac{1}{m_{\pi}^{4}}$$
$$\chi_{f}^{r}(B,T) = m_{f}^{2}\left[\chi_{f}(B,T) - \chi_{f}(B=0,T=0)\right]\frac{1}{m_{\pi}^{4}}$$

Does B get renormalized?

Does *B* induce any new divergencies? If so it has to be renormalized. Other renormalization factors may even become *B*-dependent. Quark masses for instance get renormalized. *B* breaks rotational symmetry and isospin symmetry. *B* modifies the free dispersion relation:

$$E(B) = \sqrt{p_z^2 + m^2 + 2n|qB|}$$

So maybe something sinister or complicated is happening? Fortunately not:

- Protected by U(1) gauge invariance: $(e \cdot B)^r = e \cdot B$ due to Ward-Takahashi identity $Z_e \sqrt{Z_3} = 1$.
- *B* couples to a conserved current $A_{\nu}\bar{\psi}\gamma_{\nu}\psi$.
- For an external field there are no internal photon lines in Feynman diagrams → no new type of divergent diagram.

Simulation and analysis details

Symanzik improved gauge action, $N_f = 2 + 1$ stout smeared staggered quarks at physical masses (Budapest-Wuppertal) action

- Simulate at various T and N_b .
- Fit all points by a 2D spline function.
- Keep physical *B* fixed.
- Study finite volume effects with $N_s/N_t = 3, 4, 5$
- Extrapolate to the continuum limit with $N_t = 6, 8, 10.$

Results: overview

Gunnar Bali (Regensburg)

Chiral condensate

 $\bar{\psi}\psi$ decreases with *B* in the transition region. $T_c(B)$ decreases with *B*

Gunnar Bali (Regensburg)

Previous study by D'Elia et al

 $\bar{\psi}\psi$ always grows with *B*. $T_c(B)$ increases with *B* (larger $\beta = 3/(2\pi\alpha)$: smaller $N_t a$, higher *T*). The transition becomes narrower with bigger *B*.

Comparison with D'Elia et al

	D'Elia et al	Present study
discretization errors	$N_t = 4$	$N_t = 6, 8, 10$
	naive staggered $+$ Wilson	stout + Symanzik
quark flavours	$N_f = 2$	$N_f = 2 + 1$
light quark mass	$m_{\pi}=195{ m MeV}$	$m_{\pi}=135{ m MeV}$

Quark mass dependence

 $\bar{u}u(B, T) - \bar{u}u(0, T)$: condensates are significantly different! Shift in the χ_u peak positions!

 \Rightarrow dramatic dependence on the light quark mass!

Width of the transition

At B = 0: broad crossover. What happens at B > 0? Height of the peak increases.

However when normalized to the same height...

... not much changes.

Finite size scaling

Comparison between $N_s = 16, 24, 32$ on $N_t = 6$ at $eB/T^2 \approx 82$ (Largest volume: $V \approx 7 \text{fm}^3$)

The crossover persists up to $\sqrt{eB} = 1$ GeV!

Transition temperature

- Analyze B = const slices of the 2D surfaces
- Define transition temperatures by
 - inflection point for $\bar{\psi}\psi^r$ and c_2^s
 - peak position for $\chi^{\rm r}$

• Then fit various N_t results to $T_c(B, N_t) = T_c(B) + b(B)/N_t^2$.

Phase diagram I

Phase diagram II

The effect is negligible for RHIC.

The temperature reduces by less than 5 - 10% for LHC.

The effect may be significant in the early universe.

Summary and Outlook

- QCD with and external (electro-)magnetic field is interesting
- Lattice discretization & finite size effects are under control
- Phase diagram: decreasing $T_c(B)$
 - complex, non-monotonic dependence in $ar{\psi}\psi(B,T)$
 - the crossover persists for large magnetic fields
 - no critical endpoint below $\sqrt{\textit{eB}} pprox 1$ GeV
- Other questions are under investigation
 - magnetic susceptibility of the QCD vacuum
 - effects of magnetic fields on instanton shapes
 - the hadronic Zeemann/Paschen-Back/cigar-shape effect