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Neutron star introduction

v

A dense stellar remnant containing neutrons, protons, and
electrons

Typical mass ~ 1.4M, up to 2 — 2.5Mg
Typical radius 10 — 15km
Central density is about 5 — 10ps (nuclear density)
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The neutron star inner crust
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The neutron star inner crust
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Fig. 3. Proton and neutron density dustmbutions occurnng along an axs jomng the centers of two adjacent unit cells.

(Negele Vautherin, PRC (1973))



Role of the inner crust

» Cooling of young (~ 1000 yrs) neutron stars (Gnedin,
Yakovlev, Potekhin, MNRAS (2001))

» Cooling of transient accreting neutron stars (Brown,
Cumming, APJ (2009))

» Crustal oscillations in magnetars (Strohmayer, Watts APJ
(2005))



Summary

» Discuss the low energy theory for the inner crust
» Relate low energy coefficients (LECs) of the lagrangian to
thermodynamic derivatives (Cirigliano, Reddy, Sharma, Phys.
Synopsis. PRC (2011))
» Heat transport in the inner crust of magnetars (Aguilera,
Cirigliano, Pons, Reddy, Sharma, Ed. Suggestion. PRL (2009))
> Response in the absence of the lattice: relation with Unitary
Fermi gases

» Dynamics of the Unitary Fermi gas



The low energy theory for the inner crust



lons and electrons

» Nuclei (ions) form a lattice

» Electrons form a nearly free
degenerate Fermi gas




Neutrons

> Neutrons form Cooper pairs

» Breaking a Cooper pair
requires energy A

> A ~ 1MeV while
T ~ 0.01 —0.1MeV. Hence
neutrons are can not be
excited




Low energy fields

» One Goldstone mode is associated with the phase modulation
of the condensate (111)2) ]A|e*2"¢’(x)

» The second set of Goldstone modes is associated with
translations and are the lattice phonons £?(x)

» Symmetries require invariance under constant shifts

> ¢(x) = o(x) +0
> &(x) = £(x) + b7



The effective action

>
fy vefy 4 P oneaoned — L (eabeab
Lefr = (ao¢) 5 (010) + 500870087 — S 1(§7°€™)
- 5( ?)(06EP) + mixfyy/pOodDaE +
> €70 = (0,6P + 0p¢? — 20.£°67P) is the traceless part of the

strain tensor

> An interesting feature is the mixing between the ¢ and the
longitudinal lattice mode

» The LECs can be related to derivatives of the free energy Q
with respect to external fields (for eg. the chemical potential
). We call this thermodynamic matching



Thermodynamic matching

» Identify the conserved current for the spontaneously broken
global symmetry

» Couple an external field to the conserved current, and
promote the global symmetry to a local symmetry

» Write a low energy lagrangian for the fields invariant under
the local symmetry

» The functional form of the lagrangian to the lowest order is
given by the form of the free energy Q for constant external
fields

» Perform a gradient expansion to relate the low energy
constants to thermodynamic derivatives



Matching for superfluid and crystal

» The external field that couples to neutron number symmetry
is A,. Path integral for A, = (u,0) gives the free energy

» The conserved charge associated with translations is the stress
tensor

» The external fields are the spatial components of the external
metric g.p. gap = —[/] gives the equilibrium shape of the
lattice

» The combination D,,¢ = 0, + A, is invariant under “gauge”
transfomations
» The combinations z? = x? — £?(x) are invariant under

“general covariant” transformations (Leutwyler Helv. Phys.
Acta 1997, Son PRL (2002))



Matching for superfluid and crystal

» There are three gauge invariant, scalar combinations
> Y =/D,6Dr¢
> W?=09,2°D"¢
» H® =0,z7°0"zb



Matching for superfluid and crystal

> Loi(0,€2, Ay, gu) = F(Y, W2, H3P) + .

» For constant g?b(x) = g% and A,(x) = A, = (u, A) the
action at the classical solution at ¢ = 0, and &2 = 0 is the free
energy

> A new feature is that we need to allow for A £ 0

> For constant external fields, the variables give Yy = p,
Woa — A® Hgb — g_ab

> f(AO, A7 gab) - _Q(’altv gab) - _8(’2\/1,7 gab) + AHJN



Quadratic lagrangian

» Expanding near the equilibrium, Y =y, W2 =0, H3 = —§2b

and keeping only the quadratic terms
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Entrainment

0% f : :
> np = Magpregwe 1S the density of the neutrons that are

entrained on the lattice

» The density of neutrons that participate in transport is
ne = %U"j">(q = 0) = neot — np (Also see Chamel, Pethick,
Reddy PTP (2010))



The mixing parameter

> Emix000028" = 7 magroetre 020006 + 3 ey 006 0a€7]

> First term related to the change in energy associated with
relative motion between the superfluid and the lattice. To see
that, note that in the non-relativistic limit
Wwa ~ m(—#@agb — 0p&? + %8@8,-53)

> The second term related to static interactions. In the case
where one conserved species (p) forms the lattice and the
second species (n) is superfluid, §H = —2nipf5np or

2 0% onp
39H<aY ~ P an,-




LECs in the neutron star crust

_ 1 Onn

Emix = f¢\/ﬁ[nb - npaizp]

» Use nuclear mass fomulae to obtain a rough estimate for n,
and np as a function of density

» We take nj, as the density of bound neutrons (E, < 0) in a
single particle, Wigner-Seitz approximation

» The second contribution is estimated by noting that

npg—gg ~ npf¢2 Vpp. For typical values of V,,,, the first term

dominates over the second term



The mixing between modes

w? — (2)k?>  (—gmix)wk £
( Sk Pk ) (_gmi)jwk w2 — (Cé)kz ( ng:( ) (1)



Mixing in the neutron star crust
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Effects of mixing
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Conductivity
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» B=1013 - 10"
» Aguilera, Cirigliano, Pons, Reddy, Sharma, PRL (2009)



Temperature profiles
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Better

calculation of ny

The biggest uncertainty is ny

A quantum calculation with the full band structure without
making a Wigner Seitz approximation is desirable

One can then calculate the correlation function
ne = np— np = 3(j'j")(q = 0) (Chamel et. al.)
np, also affects the frequencies of crustal oscillations



Dynamics of the unitary Fermi gas



Relation with the unitary Fermi gas

> Let us consider a simpler system of neutrons without the
lattice

» Interactions between neutrons specified by a scattering length
a ~ —18.6fm and effective range r. ~ 2.2fm

» To be compared to interparticle separation
(n)72/3 = (3x2)1/3 ke

> At low densities (kg ~ 1071fm™1), |kra| = 1, kere <1

» Unitary Fermi gas, kra — 00, krpre — 0, has a conformal
symmetry

> P = com3’/2 5/2 where o is related to the Bertsch parameter

5/2

§ c= 15726372 Equivalently & = £Er¢

k2
> Erc _% 7;) — %%(371.2)2/3(”)5/3



Effective theory of the unitary Fermi gas

» Constrained due to conformal symmetry
> E =
com3/2Y5/2 4 cymt/? (A9 \/>[(V2 #)2 —9ImV2Ag] + ...

ez
Y=p—V-— b — (V¢)2
Son, Wingate Ann. Phys. (2002)

Extraction of the constants ¢y, ¢1, ¢ subtle

v

v

v

v

We calculate them using a density functional theory which has
been well validated by ab-initio calculations



Superfluid Local Density Approximation (SLDA)

» Kohn-Sham theorem assures that there exists a functional of
the density satisfying d€/dn = —p

» The form of the functional highly constrained due to
conformal symmetry

12 h2
» E[nv] =« ;; — mn17/3V’Vr BEFc

> n= (YY) and v = (Yo)

» The values of « =1, § = —0.3942, v = —13.196 set to
reproduce results of ab-initio Monte-Carlo simulations
[A/er = 0.502, £ = 0.41] (Forbes, Bulgac PRL (2008),
Forbes, Gandolfi, Gezerlis PRL (2011))

» Here we evaluate the linear response x(q,w) = 0




Response of the unitary Fermi gas
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» ¢ = —0.00498, c» = 0.00479
» Work in progress with M. Forbes (INT)




More realistic?

» More complicated SLDA functionals — easy to include

> i and kgre corrections — easy to include

» The combined lattice and superfluid problem — hard even at
the density functional level, let alone at the ab-initio level



Vortex dynamics in the neutron superfluid

ation rate

Raot

» Neutron star glitches can result from transfer of angular
momentum from the neutron superfluid to the rigid crust

» Link, Epstein, Riper Nature (1992)



Multi-vortex dynamics using a unitary bosonic theory

» The SLDA has been successfully used to study the creation of
vortices in unitary Fermi gases (Bulgac et. al. Science (2011))

» However, glitching involves unpinning of several vortices
simultaneously. Interactions between vortices may be
important

» On the other hand the short range structure on the vortex
may not be very important

> Therefore we try a unitary bosonic model
(Bogoliubov-deGennes equations) of time evolution
> L= oW — (W= 2V — )W+
%%(371_2)2/3(2“]*\“)5/3}
» (Salasnich, Toigo PRA (2008))
» One can think of W as the pairing field ~ (y1))



Multi-vortex dynamics using BdG

> Previous studies of multi-vortex dynamics exist Warszawski,
Melatos, Berloff PRB (2012)

» We are using a BdG equation that respects the symmetry of
the problem

» Furthermore, by calibrating our calculations with more
microscopic SLDA calculations, we can put in realistic
vortex-nucleus interactions

» An example comparison



Comparing SLDA evolution with GPE evolution

v

Vstir = 0.1vp
SLDA:Movie

(Bulgac et. al. Science (2011)) and
(http://www.phys.washington.edu/groups/qmbnt/UFG/)

GPE:Movie
(work in progress with M. Forbes)
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Comparing SLDA evolution with GPE evolution

> Vetir = 0.2vF
» SLDA:Movie
» GPE:Movie



Conclusions

» The existence of neutron superfluidity affects elastic and
thermodynamic properties of neutron stars and can affect
observables

» Determining the low energy constants can provide a unified
treatment of diverse phenomena in the inner crust

» The unitary Fermi gas is a useful model system of superfluid
neutrons in the inner crust

» It would be great to definitively show from observations that
the inner crusts of neutron stars contain superfluid neutrons

» Shameless advertising: How large a magnetic field needed to
break neutron Cooper pairing? See Gezerlis, Sharma PRC
(2011)



Backup Slides



Relating ¢ to response

> w(q) = call — mVE(cr + Fe) (L)
> &= \/53% = VE3vF
> x(q,0) = _%[1 +2712\/2€(c1 — %Cz)(k%)z]



Response of the unitary Fermi gas
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» ¢ = —0.00755547, ¢, = 0.0017313
» Work in progress with M. Forbes




Temperature profiles

No sPh (Pole)
________ With sPh (Pole)
With sPh (Equator)

No sPh (Equator)

________________ 251_0_3 yr
; =
& —
.', 1
4

4 107y
————— e =
’ ! -
Y4 7l _

. // !
_______ [ J
I ]
’ 2t

i

, .
¢ 10%r]
£L —

f
) ]
/ ! _

/ I
/ / 1
Ry e i e
/ 4 1
s “ i

e //
it -
BT
12 13 14

7.8

7.6

7.4

7.2

T(K)

log



The elastic constants

v

H3b = 52b — (92¢P 4 9P¢?) +- augaaugb is related to the
deformations of the crystal

» The elastic constants are given by,
- 1
K=K+ ;P
3
p=p—P
where, P = —%(Tj) is the trace of the stress tensor

v

K = (% 0abcd — 50ab0cd — 5ac5bd)agT\/;cZ

gf
H = (%5abcd 5ac5bd)agT\/;cd

v



Formal matching

> Z[A ] _ f[d¢]e’fd4x£

> For constant A(x) = A", the full integration by definition
gives Z[A] = e VT

> Alternately, do the path integral in two steps. First integrating

out the high energy fields, and obtain an effective lagrangian
for ¢

» Then Z[A(X)] = f[dgi;]e"ﬁeff[%f\]



Formal matching, superfluid side

» We can expand the effective action about the classical
solution ¢g = 0. ¢ = ¢o + ©(x)
2
> eif(M)VTfd[g@]eifd4Xd4X/(’D(X)SD(X/)79¢?X)£33>ff’</)+“.

» The loop corrections are zero for constant external fields
because there is always a derivative acting on the external field

» Therefore f(Y)=—-Qu=Y)=Ppu=Y)
» for eg. (Son, Wingate (2006))



Introduction to LOFF phases

» BCS pairing is stressed in asymmetric or imbalanced Fermi
gases with (u1 — p2) =2u #0

d(p +q)




Introduction to LOFF phases

> In electronic systems by applying a magnetic field (Larkin,
Ovchinnikov; Fulde, Ferrell)

» In dense quark matter by the large strange quark mass
(Rajagopal, Alford, Bowers)

» In trapped cold Fermi gases by trapping different numbers of
u and d (Pao, Wu, Yip, Mannarelli, Forbes..)



Introduction to LOFF phases

> A(X) — AZ{qa} ei2qa.r

» LOFF phases are possible ground states for
dp ~ [0.707,0.754] Ag, where A is the gap in the symmetric
phase

» The free energy depends on the set of momentum vectors
{q?} or equivalently the lattice structure

> |g?| is chosen to minimize the free energy. |q?|v¢ = ndp with
1 ~ 1.2 and one can compare the free energies of different
relative orientations of {q?}

» For simple lattice structures there is a second order phase
transition from the normal phase to the LOFF phase at
op = 0.754Aq



Application to LOFF phases

» We perform the calculation of the low energy constants for a
cos(2gz) condensate

» A Ginzburg-Landau expansion in A can be used near the
second order transition



LECs in the LOFF phase

>£¢:

10 — 24 (1 + 6p) A(x) 1

A*(x) 0+ 2~ (o) | ¥ )

(¢l w2)

» Evaluate the constants by computing the free energy in the
deformed state: r — r +£(r)

» Expand to the second order in £ since we want the quadratic
lagrangian

2A cos(2q(z — £)) ~ 2A[cos(2gz) — 2g€ sin(2qz)
46262 cos(2q2)]



LECs in the LOFF phase

» For the cos condensate, one lattice phonon &7

> Integrating out the fermions still difficult beccause a space
dependent condensate

» Simplify further by making a Ginzburg Landau expansion in
A, (Mannarelli, Rajagopal, Sharma (2007))



LECs in the LOFF phase

v

ﬁ = %[ £(000)? — 2avZ(0x})? + 2aq® v (0p€X)? —
2y (3 £ + [aquF(DopdxE™)]

_ 2mkeA\?
> X = 252 (7-)
> A 73

8mix = S -1

The mixing is parameterically small near the second order
point, but may be important when A is larger

v

v

Requires a more careful consideration of gapless fermions



	Thermodynamic matching for superfluid and crystal

