Neutron superfluidity in the neutron star inner crust

Rishi Sharma

July 24, 2012

Neutron star introduction

- A dense stellar remnant containing neutrons, protons, and electrons
- Typical mass $\sim 1.4 M_{\odot}$, up to $2-2.5 M_{\odot}$
- Typical radius 10 15km
- Central density is about $5 10\rho_s$ (nuclear density)

The neutron star inner crust

The neutron star inner crust

Fig. 3. Proton and neutron density distributions occurring along an axis joining the centers of two adjacent unit cells.

(Negele Vautherin, PRC (1973))

Role of the inner crust

- ► Cooling of young (~ 1000 yrs) neutron stars (Gnedin, Yakovlev, Potekhin, MNRAS (2001))
- Cooling of transient accreting neutron stars (Brown, Cumming, APJ (2009))
- Crustal oscillations in magnetars (Strohmayer, Watts APJ (2005))

Summary

Discuss the low energy theory for the inner crust

- Relate low energy coefficients (LECs) of the lagrangian to thermodynamic derivatives (Cirigliano, Reddy, Sharma, Phys. Synopsis. PRC (2011))
- Heat transport in the inner crust of magnetars (Aguilera, Cirigliano, Pons, Reddy, Sharma, Ed. Suggestion. PRL (2009))
- Response in the absence of the lattice: relation with Unitary Fermi gases
- Dynamics of the Unitary Fermi gas

The low energy theory for the inner crust

lons and electrons

- Nuclei (ions) form a lattice
- Electrons form a nearly free degenerate Fermi gas

Neutrons

- Neutrons form Cooper pairs
- Breaking a Cooper pair requires energy Δ
- ► ∆ ~ 1MeV while T ~ 0.01 - 0.1MeV. Hence neutrons are can not be excited

- One Goldstone mode is associated with the phase modulation of the condensate $\langle \psi_1 \psi_2 \rangle \propto |\Delta| e^{-2i\phi(x)}$
- ► The second set of Goldstone modes is associated with translations and are the lattice phonons ξ^a(x)
- Symmetries require invariance under constant shifts

•
$$\phi(x) \to \phi(x) + \theta$$

•
$$\xi^a(x) \rightarrow \xi^a(x) + b^a$$

The effective action

►

$$L_{eff} = \frac{f_{\phi}^2}{2} (\partial_0 \phi)^2 - \frac{v_{\phi}^2 f_{\phi}^2}{2} (\partial_i \phi)^2 + \frac{\rho}{2} \partial_0 \xi^a \partial_0 \xi^a - \frac{1}{4} \mu (\xi^{ab} \xi^{ab}) - \frac{\kappa}{2} (\partial_a \xi^a) (\partial_b \xi^b) + g_{\min} f_{\phi} \sqrt{\rho} \partial_0 \phi \partial_a \xi^a + \cdots$$

► $\xi^{ab} = (\partial_a \xi^b + \partial_b \xi^a - \frac{2}{3} \partial_c \xi^c \delta^{ab})$ is the traceless part of the strain tensor

- \blacktriangleright An interesting feature is the mixing between the ϕ and the longitudinal lattice mode
- The LECs can be related to derivatives of the free energy Ω with respect to external fields (for eg. the chemical potential μ). We call this thermodynamic matching

Thermodynamic matching

- Identify the conserved current for the spontaneously broken global symmetry
- Couple an external field to the conserved current, and promote the global symmetry to a local symmetry
- Write a low energy lagrangian for the fields invariant under the local symmetry
- The functional form of the lagrangian to the lowest order is given by the form of the free energy Ω for constant external fields
- Perform a gradient expansion to relate the low energy constants to thermodynamic derivatives

Matching for superfluid and crystal

- ► The external field that couples to neutron number symmetry is A_µ. Path integral for A_µ = (µ, 0) gives the free energy
- The conserved charge associated with translations is the stress tensor
- ► The external fields are the spatial components of the external metric g_{ab}. g_{ab} = -[I] gives the equilibrium shape of the lattice
- ► The combination $D_{\mu}\phi = \partial_{\mu} + A_{\mu}$ is invariant under "gauge" transfomations
- The combinations z^a = x^a ξ^a(x) are invariant under "general covariant" transformations (Leutwyler Helv. Phys. Acta 1997, Son PRL (2002))

Matching for superfluid and crystal

There are three gauge invariant, scalar combinations

$$Y = \sqrt{D_{\mu}\phi D^{\mu}\phi}$$

$$V^{a} = \partial_{\mu} z^{a} D^{\mu} \phi$$

$$U^{ab} = \partial_{\mu} z^{a} \partial_{\mu} z^{b}$$

$$\bullet \quad H^{ab} = \partial_{\mu} z^{a} \partial^{\mu} z^{l}$$

Matching for superfluid and crystal

- $\blacktriangleright \mathcal{L}_{\text{eff}}(\phi,\xi^a,A_\mu,g_{\mu\nu}) = f(Y,W^a,H^{ab}) + \dots$
- For constant g^{ab}(x) = ḡ^{ab} and A_μ(x) = Ã_μ = (μ, A) the action at the classical solution at φ = 0, and ξ^a = 0 is the free energy
- A new feature is that we need to allow for ${\bm A} \neq {\bm 0}$
- For constant external fields, the variables give Y₀ = μ, W₀^a = A^a, H₀^{ab} = ḡ^{ab}
 f(Ã₀, A, ḡ_{ab}) = -Ω(Ã_μ, ḡ_{ab}) = -E(Ã_μ, ḡ_{ab}) + Ã_μj^μ

Quadratic lagrangian

• Expanding near the equilibrium, $Y = \mu$, $W^a = 0$, $H^{ab} = -\delta^{ab}$ and keeping only the quadratic terms

$$\begin{aligned} \mathcal{L}_{0} &= \frac{1}{2} \Big[\frac{\partial^{2} f}{\partial Y^{2}} \Big] (\partial_{0} \phi)^{2} - \frac{1}{2} \Big[\frac{1}{m} \frac{\partial f}{\partial Y} - \frac{\partial^{2} f}{3 \partial W^{c} \partial W^{c}} \Big] (\partial_{i} \phi)^{2} \\ &+ \frac{1}{2} \Big[\frac{2}{3} \frac{\partial f}{\partial H^{cc}} + m^{2} \frac{\partial^{2} f}{3 \partial W^{c} \partial W^{c}} \Big] \dot{\xi}^{a} \dot{\xi}^{a} \\ &+ \Big[\frac{2}{3} \frac{\partial^{2} f}{\partial H^{cc} \partial Y} + m \frac{\partial^{2} f}{3 \partial W^{c} \partial W^{c}} \Big] (\partial_{c} \xi^{c}) (\partial_{0} \phi) \\ &- \frac{1}{4} \Big[\mu \Big] \xi^{ab} \xi^{ab} - \frac{1}{2} \Big[K \Big] (\partial_{c} \xi^{c})^{2} \end{aligned}$$

Entrainment

- $n_b = m \frac{\partial^2 f}{\partial \partial W^c \partial W^c}$ is the density of the neutrons that are entrained on the lattice
- ▶ The density of neutrons that participate in transport is $n_c = \frac{1}{3} \langle j^i j^i \rangle (q = 0) = n_{tot} - n_b$ (Also see Chamel, Pethick, Reddy PTP (2010))

The mixing parameter

$$\blacktriangleright g_{mix}\partial_0\phi\partial_a\xi^a \equiv \frac{1}{f_{\phi\sqrt{\rho}}} [m\frac{\partial^2 f}{3\partial W^c \partial W^c}\partial_a\phi\partial_0\xi^a + \frac{2}{3}\frac{\partial^2 f}{\partial H^{cc} \partial Y}\partial_0\phi\partial_a\xi^a]$$

- ► First term related to the change in energy associated with relative motion between the superfluid and the lattice. To see that, note that in the non-relativistic limit $W^a \sim m(-\frac{1}{m}\partial_a\phi \partial_0\xi^a + \frac{1}{m}\partial_i\phi\partial_i\xi^a)$
- ► The second term related to static interactions. In the case where one conserved species (*p*) forms the lattice and the second species (*n*) is superfluid, $\delta H^{cc} = -2\frac{1}{n_p}\delta n_p$ or $\frac{2}{3}\frac{\partial^2 f}{\partial H^{cc}\partial Y} = n_p \frac{\partial n_n}{\partial n_p}$.

LECs in the neutron star crust

•
$$g_{\text{mix}} = \frac{1}{f_{\phi}\sqrt{\rho}} [n_b - n_p \frac{\partial n_n}{\partial n_p}]$$

- Use nuclear mass fomulae to obtain a rough estimate for n_n and n_p as a function of density
- ▶ We take n_b as the density of bound neutrons (E_n < 0) in a single particle, Wigner-Seitz approximation</p>
- The second contribution is estimated by noting that $n_p \frac{\partial n_n}{\partial n_p} \sim n_p f_{\phi}^2 \tilde{V}_{np}$. For typical values of \tilde{V}_{np} , the first term dominates over the second term

The mixing between modes

$$\begin{pmatrix} \xi_k & \varphi_k \end{pmatrix} \begin{bmatrix} \omega^2 - (c_{\xi}^2)k^2 & (-g_{mix})\omega k \\ (-g_{mix})\omega k & \omega^2 - (c_{\phi}^2)k^2 \end{bmatrix} \begin{pmatrix} \xi_k \\ \varphi_k \end{pmatrix}$$
(1)

Mixing in the neutron star crust

Effects of mixing

$$C_{\nu\phi} = \frac{2\pi^2 T^3}{15} \left(\frac{1}{v_{\phi}^3}\right)$$

$$\lambda_{\phi}(\omega) = \frac{v_{\xi}^2}{g_{\min}^2} \left[\frac{1 + (1 - \alpha^2)^2 (\omega \tau_{\xi})^2}{\alpha (\omega \tau_{\xi})^2}\right] \lambda_{\xi}(\omega)$$

$$\lambda_{\xi}(\omega) \sim \frac{2}{\pi \omega}$$

$$\alpha = \frac{v_{\xi}}{v_{\phi}}$$

• Thermal conductivity $\kappa = \frac{1}{3} C_{\nu\phi} v_{\phi} \lambda_{\phi}$

$$\phi \qquad \xi \\ g_{mix} \qquad e$$

Conductivity

 $\bullet \ B = 10^{13} - 10^{14}$

Aguilera, Cirigliano, Pons, Reddy, Sharma, PRL (2009)

Temperature profiles

Better calculation of n_b

- The biggest uncertainty is n_b
- A quantum calculation with the full band structure without making a Wigner Seitz approximation is desirable
- One can then calculate the correlation function $n_c = n_n n_b = \frac{1}{3} \langle j^i j^i \rangle (q = 0)$ (Chamel et. al.)
- n_b also affects the frequencies of crustal oscillations

Dynamics of the unitary Fermi gas

Relation with the unitary Fermi gas

- Let us consider a simpler system of neutrons without the lattice
- ▶ Interactions between neutrons specified by a scattering length $a \sim -18.6$ fm and effective range $r_e \sim 2.2$ fm
- To be compared to interparticle separation $(n)^{-1/3} = (3\pi^2)^{1/3}/k_F$
- At low densities ($k_F \sim 10^{-1} {
 m fm}^{-1}$), $|k_F a| \gtrsim 1$, $k_F r_e \lesssim 1$
- ► Unitary Fermi gas, k_Fa → ∞, k_Fr_e → 0, has a conformal symmetry

Effective theory of the unitary Fermi gas

Constrained due to conformal symmetry

•
$$\mathcal{L} = c_0 m^{3/2} Y^{5/2} + c_1 m^{1/2} \frac{(\nabla Y)^2}{\sqrt{Y}} + \frac{c_2}{\sqrt{m}} \sqrt{Y} [(\nabla^2 \phi)^2 - 9m \nabla^2 A_0] + ...$$

• $Y = \mu - V - \dot{\phi} - \frac{(\nabla \phi)^2}{2m}$

- Extraction of the constants c_0 , c_1 , c_2 subtle
- We calculate them using a density functional theory which has been well validated by *ab-initio* calculations

Superfluid Local Density Approximation (SLDA)

- ▶ Kohn-Sham theorem assures that there exists a functional of the density satisfying dE/dn = -µ
- The form of the functional highly constrained due to conformal symmetry

$$\blacktriangleright \mathcal{E}[\mathbf{n},\nu] = \alpha \frac{\hbar^2 \tau_r^2}{2m} - \frac{\hbar^2 \gamma}{m n^{1/3}} \nu_r^{\dagger} \nu_r + \beta \mathcal{E}_{FG}$$

•
$$\mathbf{n} = \langle \psi^{\dagger} \psi \rangle$$
 and $\nu = \langle \psi \psi \rangle$

- The values of α = 1, β = −0.3942, γ = −13.196 set to reproduce results of *ab-initio* Monte-Carlo simulations [Δ/e_F = 0.502, ξ = 0.41] (Forbes, Bulgac PRL (2008), Forbes, Gandolfi, Gezerlis PRL (2011))
- Here we evaluate the linear response $\chi(q,\omega) = rac{\delta n(q,\omega)}{\delta V(q,\omega)}$

Response of the unitary Fermi gas

- ▶ $c_1 = -0.00498$, $c_2 = 0.00479$
- Work in progress with M. Forbes (INT)

- More complicated SLDA functionals easy to include
- $\frac{1}{k_{Fa}}$ and $k_{F}r_{e}$ corrections easy to include
- The combined lattice and superfluid problem hard even at the density functional level, let alone at the *ab-initio* level

Vortex dynamics in the neutron superfluid

- Neutron star glitches can result from transfer of angular momentum from the neutron superfluid to the rigid crust
- Link, Epstein, Riper Nature (1992)

Multi-vortex dynamics using a unitary bosonic theory

- The SLDA has been successfully used to study the creation of vortices in unitary Fermi gases (Bulgac et. al. Science (2011))
- However, glitching involves unpinning of several vortices simultaneously. Interactions between vortices may be important
- On the other hand the short range structure on the vortex may not be very important
- Therefore we try a unitary bosonic model (Bogoliubov-deGennes equations) of time evolution

•
$$\mathcal{L} = \Psi^* i \partial_t \Psi - \left[\Psi^* (-\frac{\hbar^2 \nabla^2}{4m_F} + 2(V - \mu)) \Psi + \xi_{\frac{5}{5} \frac{\hbar^2}{2m_F}} (3\pi^2)^{2/3} (2\Psi^* \Psi)^{5/3} \right]$$

(Salasnich, Toigo PRA (2008))

- One can think of Ψ as the pairing field $\sim \langle \psi\psi\rangle$

Multi-vortex dynamics using BdG

- Previous studies of multi-vortex dynamics exist Warszawski, Melatos, Berloff PRB (2012)
- We are using a BdG equation that respects the symmetry of the problem
- Furthermore, by calibrating our calculations with more microscopic SLDA calculations, we can put in realistic vortex-nucleus interactions
- An example comparison

Comparing SLDA evolution with GPE evolution

- $v_{\rm stir} = 0.1 v_F$
- SLDA:Movie
- (Bulgac et. al. Science (2011)) and (http://www.phys.washington.edu/groups/qmbnt/UFG/)
- GPE:Movie
- (work in progress with M. Forbes)

Comparing SLDA evolution with GPE evolution

- $v_{\rm stir} = 0.2 v_F$
- SLDA:Movie
- GPE:Movie

Conclusions

- The existence of neutron superfluidity affects elastic and thermodynamic properties of neutron stars and can affect observables
- Determining the low energy constants can provide a unified treatment of diverse phenomena in the inner crust
- The unitary Fermi gas is a useful model system of superfluid neutrons in the inner crust
- It would be great to definitively show from observations that the inner crusts of neutron stars contain superfluid neutrons
- Shameless advertising: How large a magnetic field needed to break neutron Cooper pairing? See *Gezerlis, Sharma PRC* (2011)

Backup Slides

Relating c to response

•
$$\omega(q) = c_s q [1 - \pi^2 \sqrt{2\xi} (c_1 + \frac{3}{2} c_2) (\frac{q}{k_F})^2]$$

• $c_s = \sqrt{\xi} 3 \frac{k_F}{m} = \sqrt{\xi} 3 v_F$
• $\chi(q, 0) = -\frac{mk_F}{\pi^2 \xi} [1 + 2\pi^2 \sqrt{2\xi} (c_1 - \frac{9}{2} c_2) (\frac{q}{k_F})^2]$

Response of the unitary Fermi gas

- $c_1 = -0.00755547$, $c_2 = 0.0017313$
- Work in progress with M. Forbes

Temperature profiles

 No sPh (Pole)
 With sPh (Pole)
 With sPh (Equator)
 No sPh (Equator)

The elastic constants

The elastic constants are given by,

$$egin{aligned} \mathcal{K} &= ar{\mathcal{K}} + rac{1}{3} \mathcal{P} \ \mu &= ar{\mu} - \mathcal{P} \end{aligned}$$

where, $P = -\frac{1}{3} \langle T_a^a \rangle$ is the trace of the stress tensor $\bar{K} = (\frac{10}{9} \delta_{abcd} - \frac{2}{3} \delta_{ab} \delta_{cd} - \frac{4}{9} \delta_{ac} \delta_{bd}) \frac{\partial^2 \sqrt{-g} f}{\partial g^{ab} \partial g^{cd}}$ $\bar{\mu} = (\frac{2}{3} \delta_{abcd} - \frac{2}{3} \delta_{ac} \delta_{bd}) \frac{\partial^2 \sqrt{-g} f}{\partial g^{ab} \partial g^{cd}}$

Formal matching

- $Z[A(x)] = \int [d\psi] e^{i \int d^4 x \mathcal{L}}$
- ► For constant $A^{\mu}(x) = \overline{A}^{\mu}$, the full integration by definition gives $Z[\overline{A}] = e^{-i\Omega VT}$
- \blacktriangleright Alternately, do the path integral in two steps. First integrating out the high energy fields, and obtain an effective lagrangian for ϕ

• Then
$$Z[A(x)] = \int [d\phi] e^{i\mathcal{L}_{\text{eff}}[\phi,A]}$$

Formal matching, superfluid side

We can expand the effective action about the classical solution φ₀ = 0. φ = φ₀ + φ(x)

•
$$e^{if(\mu)VT} \int d[\varphi] e^{i \int d^4x d^4x' \varphi(x)\varphi(x') \frac{\partial^2 \mathcal{L}_{eff}}{\partial \phi(x) \partial \phi(x')} + \dots}$$

The loop corrections are zero for constant external fields because there is always a derivative acting on the external field

• Therefore
$$f(Y) = -\Omega(\mu = Y) = P(\mu = Y)$$

▶ for eg. (Son, Wingate (2006))

Introduction to LOFF phases

► BCS pairing is stressed in asymmetric or imbalanced Fermi gases with $(\mu_1 - \mu_2) = 2\delta\mu \neq 0$

Introduction to LOFF phases

- In electronic systems by applying a magnetic field (Larkin, Ovchinnikov; Fulde, Ferrell)
- In dense quark matter by the large strange quark mass (Rajagopal, Alford, Bowers)
- In trapped cold Fermi gases by trapping different numbers of u and d (Pao, Wu, Yip, Mannarelli, Forbes..)

Introduction to LOFF phases

•
$$\Delta(x) = \Delta \sum_{\{\mathbf{q}^a\}} e^{i 2 \mathbf{q}^a \cdot \mathbf{r}}$$

- LOFF phases are possible ground states for $\delta \mu \sim [0.707, 0.754] \Delta_0$, where Δ_0 is the gap in the symmetric phase
- \blacktriangleright The free energy depends on the set of momentum vectors $\{q^a\}$ or equivalently the lattice structure
- ► $|\mathbf{q}^a|$ is chosen to minimize the free energy. $|\mathbf{q}^a|v_f = \eta\delta\mu$ with $\eta \sim 1.2$ and one can compare the free energies of different relative orientations of $\{\mathbf{q}^a\}$
- ► For simple lattice structures there is a second order phase transition from the normal phase to the LOFF phase at $\delta\mu = 0.754\Delta_0$

Application to LOFF phases

- ► We perform the calculation of the low energy constants for a cos(2qz) condensate
- ► A Ginzburg-Landau expansion in ∆ can be used near the second order transition

LECs in the LOFF phase

$$\mathcal{L}_{\psi} = \begin{pmatrix} \psi_1^{\dagger} & \psi_2 \end{pmatrix} \begin{bmatrix} i\partial_t - \frac{p^2}{2m} + (\mu + \delta\mu) & \Delta(x) \\ \Delta^*(x) & i\partial_t + \frac{p^2}{2m} - (\mu - \delta\mu) \end{bmatrix} \begin{pmatrix} \psi_1 \\ \psi_2^{\dagger} \end{pmatrix}$$

- Evaluate the constants by computing the free energy in the deformed state: r → r + ξ(r)
- Expand to the second order in ξ since we want the quadratic lagrangian

$$2\Delta\cos(2q(z-\xi)) \sim 2\Delta[\cos(2qz) - 2q\xi\sin(2qz) - 4q^2\xi^2\cos(2qz)]$$

LECs in the LOFF phase

- For the cos condensate, one lattice phonon ξ^z
- Integrating out the fermions still difficult beccause a space dependent condensate
- Simplify further by making a Ginzburg Landau expansion in Δ, (Mannarelli, Rajagopal, Sharma (2007))

LECs in the LOFF phase

$$\mathcal{L} = \frac{1}{2} [\frac{mk_f}{\pi^2} (\partial_0 \phi)^2 - 2\alpha v_f^2 (\partial_x \phi)^2 + 2\alpha q^2 v_f^2 (\partial_0 \xi^x)^2 - 2\alpha q^2 v_f^4 (\partial_x \xi^x)^2] + [\alpha q v_f^2 (\partial_0 \phi \partial_x \xi^x)]$$

$$\alpha = \frac{2mk_f \Delta^2}{\pi^2 \delta \mu^2 (\eta^2 - 1)}$$

$$g_{mix} = \frac{\Delta}{\delta \mu} \frac{v_f}{\sqrt{(\eta^2 - 1)}}$$

- The mixing is parameterically small near the second order point, but may be important when Δ is larger
- Requires a more careful consideration of gapless fermions