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Neutron star introduction

I A dense stellar remnant containing neutrons, protons, and
electrons

I Typical mass ∼ 1.4M�, up to 2− 2.5M�
I Typical radius 10− 15km

I Central density is about 5− 10ρs (nuclear density)



The neutron star inner crust

Unbound neu-
trons in the in-
ner crust are
superfluid. The
nuclei form a
lattice.



The neutron star inner crust

(Negele Vautherin, PRC (1973))



Role of the inner crust

I Cooling of young (∼ 1000 yrs) neutron stars (Gnedin,
Yakovlev, Potekhin, MNRAS (2001))

I Cooling of transient accreting neutron stars (Brown,
Cumming, APJ (2009))

I Crustal oscillations in magnetars (Strohmayer, Watts APJ
(2005))



Summary

I Discuss the low energy theory for the inner crust
I Relate low energy coefficients (LECs) of the lagrangian to

thermodynamic derivatives (Cirigliano, Reddy, Sharma, Phys.
Synopsis. PRC (2011))

I Heat transport in the inner crust of magnetars (Aguilera,
Cirigliano, Pons, Reddy, Sharma, Ed. Suggestion. PRL (2009))

I Response in the absence of the lattice: relation with Unitary
Fermi gases

I Dynamics of the Unitary Fermi gas



The low energy theory for the inner crust



Ions and electrons

I Nuclei (ions) form a lattice

I Electrons form a nearly free
degenerate Fermi gas



Neutrons

I Neutrons form Cooper pairs

I Breaking a Cooper pair
requires energy ∆

I ∆ ∼ 1MeV while
T ∼ 0.01− 0.1MeV. Hence
neutrons are can not be
excited



Low energy fields

I One Goldstone mode is associated with the phase modulation
of the condensate 〈ψ1ψ2〉 ∝ |∆|e−2iφ(x)

I The second set of Goldstone modes is associated with
translations and are the lattice phonons ξa(x)

I Symmetries require invariance under constant shifts
I φ(x)→ φ(x) + θ
I ξa(x)→ ξa(x) + ba



The effective action
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cδab) is the traceless part of the
strain tensor

I An interesting feature is the mixing between the φ and the
longitudinal lattice mode

I The LECs can be related to derivatives of the free energy Ω
with respect to external fields (for eg. the chemical potential
µ). We call this thermodynamic matching



Thermodynamic matching

I Identify the conserved current for the spontaneously broken
global symmetry

I Couple an external field to the conserved current, and
promote the global symmetry to a local symmetry

I Write a low energy lagrangian for the fields invariant under
the local symmetry

I The functional form of the lagrangian to the lowest order is
given by the form of the free energy Ω for constant external
fields

I Perform a gradient expansion to relate the low energy
constants to thermodynamic derivatives



Matching for superfluid and crystal

I The external field that couples to neutron number symmetry
is Aµ. Path integral for Aµ = (µ, 0) gives the free energy

I The conserved charge associated with translations is the stress
tensor

I The external fields are the spatial components of the external
metric gab. gab = −[I ] gives the equilibrium shape of the
lattice

I The combination Dµφ = ∂µ + Aµ is invariant under “gauge”
transfomations

I The combinations za = xa − ξa(x) are invariant under
“general covariant” transformations (Leutwyler Helv. Phys.
Acta 1997, Son PRL (2002))



Matching for superfluid and crystal

I There are three gauge invariant, scalar combinations
I Y =

√
DµφDµφ

I W a = ∂µzaDµφ
I Hab = ∂µza∂µzb



Matching for superfluid and crystal

I Leff(φ, ξa,Aµ, gµν) = f (Y ,W a,Hab) + ...

I For constant g ab(x) = ḡ ab and Aµ(x) = Ãµ = (µ,A) the
action at the classical solution at φ = 0, and ξa = 0 is the free
energy

I A new feature is that we need to allow for A 6= 0

I For constant external fields, the variables give Y0 = µ,
W a

0 = Aa, Hab
0 = ḡ ab

I f (Ã0,A, ḡab) = −Ω(Ãµ, ḡab) = −E(Ãµ, ḡab) + Ãµjµ



Quadratic lagrangian

I Expanding near the equilibrium, Y = µ, W a = 0, Hab = −δab

and keeping only the quadratic terms
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Entrainment

I nb = m ∂2f
3∂W c∂W c is the density of the neutrons that are

entrained on the lattice

I The density of neutrons that participate in transport is
nc = 1

3〈j
i j i 〉(q = 0) = ntot − nb (Also see Chamel, Pethick,

Reddy PTP (2010))



The mixing parameter
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I First term related to the change in energy associated with
relative motion between the superfluid and the lattice. To see
that, note that in the non-relativistic limit
W a ∼ m(− 1

m∂aφ− ∂0ξ
a + 1
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I The second term related to static interactions. In the case
where one conserved species (p) forms the lattice and the
second species (n) is superfluid, δHcc = −2 1
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LECs in the neutron star crust

I gmix = 1
fφ
√
ρ [nb − np

∂nn
∂np

]

I Use nuclear mass fomulae to obtain a rough estimate for nn

and np as a function of density

I We take nb as the density of bound neutrons (En < 0) in a
single particle, Wigner-Seitz approximation

I The second contribution is estimated by noting that
np

∂nn
∂np
∼ npf 2

φ Ṽnp. For typical values of Ṽnp, the first term
dominates over the second term



The mixing between modes
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Mixing in the neutron star crust



Effects of mixing

I Cvφ = 2π2T 3
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Conductivity

I B = 1013 − 1014

I Aguilera, Cirigliano, Pons, Reddy, Sharma, PRL (2009)



Temperature profiles

With sPh (Pole)

With sPh (Equator)

No sPh (Equator)

No sPh (Pole)



Better calculation of nb

I The biggest uncertainty is nb

I A quantum calculation with the full band structure without
making a Wigner Seitz approximation is desirable

I One can then calculate the correlation function
nc = nn − nb = 1

3〈j
i j i 〉(q = 0) (Chamel et. al.)

I nb also affects the frequencies of crustal oscillations



Dynamics of the unitary Fermi gas



Relation with the unitary Fermi gas

I Let us consider a simpler system of neutrons without the
lattice

I Interactions between neutrons specified by a scattering length
a ∼ −18.6fm and effective range re ∼ 2.2fm

I To be compared to interparticle separation
(n)−1/3 = (3π2)1/3/kF

I At low densities (kF ∼ 10−1fm−1), |kF a| & 1, kF re . 1

I Unitary Fermi gas, kF a→∞, kF re → 0, has a conformal
symmetry

I P = c0m3/2µ5/2 where c0 is related to the Bertsch parameter

ξ, c0 = 25/2

15π2ξ3/2 . Equivalently E = ξEFG

I EFG = 3
5 n

k2
F

2m = 3
5

~2

2m (3π2)2/3(n)5/3



Effective theory of the unitary Fermi gas

I Constrained due to conformal symmetry

I L =
c0m3/2Y 5/2 + c1m1/2 (∇Y )2

√
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+ c2√
m

√
Y [(∇2φ)2− 9m∇2A0] + ...

I Y = µ− V − φ̇− (∇φ)2

2m

I Son, Wingate Ann. Phys. (2002)

I Extraction of the constants c0, c1, c2 subtle

I We calculate them using a density functional theory which has
been well validated by ab-initio calculations



Superfluid Local Density Approximation (SLDA)

I Kohn-Sham theorem assures that there exists a functional of
the density satisfying dE/dn = −µ

I The form of the functional highly constrained due to
conformal symmetry

I E [n, ν] = α~2τ2
r

2m −
~2γ

mn1/3 ν
†
r νr + βEFG

I n = 〈ψ†ψ〉 and ν = 〈ψψ〉
I The values of α = 1, β = −0.3942, γ = −13.196 set to

reproduce results of ab-initio Monte-Carlo simulations
[∆/eF = 0.502, ξ = 0.41] (Forbes, Bulgac PRL (2008),
Forbes, Gandolfi, Gezerlis PRL (2011))

I Here we evaluate the linear response χ(q, ω) = δn(q,ω)
δV (q,ω)



Response of the unitary Fermi gas

I c1 = −0.00498, c2 = 0.00479

I Work in progress with M. Forbes (INT)



More realistic?

I More complicated SLDA functionals – easy to include

I 1
kF a and kF re corrections – easy to include

I The combined lattice and superfluid problem – hard even at
the density functional level, let alone at the ab-initio level



Vortex dynamics in the neutron superfluid

I Neutron star glitches can result from transfer of angular
momentum from the neutron superfluid to the rigid crust

I Link, Epstein, Riper Nature (1992)



Multi-vortex dynamics using a unitary bosonic theory

I The SLDA has been successfully used to study the creation of
vortices in unitary Fermi gases (Bulgac et. al. Science (2011))

I However, glitching involves unpinning of several vortices
simultaneously. Interactions between vortices may be
important

I On the other hand the short range structure on the vortex
may not be very important

I Therefore we try a unitary bosonic model
(Bogoliubov-deGennes equations) of time evolution
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]
I (Salasnich, Toigo PRA (2008))

I One can think of Ψ as the pairing field ∼ 〈ψψ〉



Multi-vortex dynamics using BdG

I Previous studies of multi-vortex dynamics exist Warszawski,
Melatos, Berloff PRB (2012)

I We are using a BdG equation that respects the symmetry of
the problem

I Furthermore, by calibrating our calculations with more
microscopic SLDA calculations, we can put in realistic
vortex-nucleus interactions

I An example comparison



Comparing SLDA evolution with GPE evolution

I vstir = 0.1vF

I SLDA:Movie

I (Bulgac et. al. Science (2011)) and
(http://www.phys.washington.edu/groups/qmbnt/UFG/)

I GPE:Movie

I (work in progress with M. Forbes)



Comparing SLDA evolution with GPE evolution

I vstir = 0.2vF

I SLDA:Movie

I GPE:Movie



Conclusions

I The existence of neutron superfluidity affects elastic and
thermodynamic properties of neutron stars and can affect
observables

I Determining the low energy constants can provide a unified
treatment of diverse phenomena in the inner crust

I The unitary Fermi gas is a useful model system of superfluid
neutrons in the inner crust

I It would be great to definitively show from observations that
the inner crusts of neutron stars contain superfluid neutrons

I Shameless advertising: How large a magnetic field needed to
break neutron Cooper pairing? See Gezerlis, Sharma PRC
(2011)



Backup Slides



Relating c to response

I ω(q) = csq[1− π2
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Response of the unitary Fermi gas

I c1 = −0.00755547, c2 = 0.0017313

I Work in progress with M. Forbes



Temperature profiles

With sPh (Pole)

With sPh (Equator)

No sPh (Equator)

No sPh (Pole)



The elastic constants

I Hab ≡ ηab − (∂aξb + ∂bξa) + ∂µξ
a∂µξb is related to the

deformations of the crystal

I The elastic constants are given by,

K = K̄ +
1

3
P

µ = µ̄− P

where, P = −1
3〈T

a
a 〉 is the trace of the stress tensor

I K̄ = ( 10
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9δacδbd ) ∂

2√−gf
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I µ̄ = ( 2
3δabcd − 2
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2√−gf

∂gab∂g cd



Formal matching

I Z [A(x)] =
∫

[dψ]e i
∫

d4xL

I For constant Aµ(x) = Āµ, the full integration by definition
gives Z [Ā] = e−iΩVT

I Alternately, do the path integral in two steps. First integrating
out the high energy fields, and obtain an effective lagrangian
for φ

I Then Z [A(x)] =
∫

[dφ]e iLeff [φ,A]



Formal matching, superfluid side

I We can expand the effective action about the classical
solution φ0 = 0. φ = φ0 + ϕ(x)

I e if (µ)VT
∫

d [ϕ]e
i
∫

d4xd4x ′ϕ(x)ϕ(x ′)
∂2Leff

∂φ(x)∂φ(x′)
+...

I The loop corrections are zero for constant external fields
because there is always a derivative acting on the external field

I Therefore f (Y ) = −Ω(µ = Y ) = P(µ = Y )

I for eg. (Son, Wingate (2006))



Introduction to LOFF phases

I BCS pairing is stressed in asymmetric or imbalanced Fermi
gases with (µ1 − µ2) = 2δµ 6= 0



Introduction to LOFF phases

I In electronic systems by applying a magnetic field (Larkin,
Ovchinnikov; Fulde, Ferrell)

I In dense quark matter by the large strange quark mass
(Rajagopal, Alford, Bowers)

I In trapped cold Fermi gases by trapping different numbers of
u and d (Pao, Wu, Yip, Mannarelli, Forbes..)



Introduction to LOFF phases

I ∆(x) = ∆
∑
{qa} e i2qa·r

I LOFF phases are possible ground states for
δµ ∼ [0.707, 0.754]∆0, where ∆0 is the gap in the symmetric
phase

I The free energy depends on the set of momentum vectors
{qa} or equivalently the lattice structure

I |qa| is chosen to minimize the free energy. |qa|vf = ηδµ with
η ∼ 1.2 and one can compare the free energies of different
relative orientations of {qa}

I For simple lattice structures there is a second order phase
transition from the normal phase to the LOFF phase at
δµ = 0.754∆0



Application to LOFF phases

I We perform the calculation of the low energy constants for a
cos(2qz) condensate

I A Ginzburg-Landau expansion in ∆ can be used near the
second order transition



LECs in the LOFF phase

I Lψ =

( ψ†1 ψ2 )

[
i∂t − p2

2m + (µ+ δµ) ∆(x)

∆∗(x) i∂t + p2

2m − (µ− δµ)

]
(
ψ1

ψ†2
)

I Evaluate the constants by computing the free energy in the
deformed state: r→ r + ξ(r)

I Expand to the second order in ξ since we want the quadratic
lagrangian

2∆ cos
(
2q(z − ξ)

)
∼ 2∆[cos(2qz)− 2qξ sin(2qz)

−4q2ξ2 cos(2qz)]



LECs in the LOFF phase

I For the cos condensate, one lattice phonon ξz

I Integrating out the fermions still difficult beccause a space
dependent condensate

I Simplify further by making a Ginzburg Landau expansion in
∆, (Mannarelli, Rajagopal, Sharma (2007))



LECs in the LOFF phase

I L = 1
2 [ mkf

π2 (∂0φ)2 − 2αv 2
f (∂xφ)2 + 2αq2v 2

f (∂0ξ
x )2 −

2αq2v 4
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I α = 2mkf ∆2

π2δµ2(η2−1)

I gmix = ∆
δµ

vf√
(η2−1)

I The mixing is parameterically small near the second order
point, but may be important when ∆ is larger

I Requires a more careful consideration of gapless fermions


	Thermodynamic matching for superfluid and crystal

