

Linux / Unix

Santosh Kyadari (santoshk@tifr.res.in)

--CCCF

 Date: 5 -9 -2012

mailto:santoshk@tifr.res.in

Introduction

 Linus Torvalds – Creator of Linux

 Open Source Operating System

 Source Code Available

 Kernel can be customized to user’s needs

Linux/Unix system organization

Hardware

Kernel (OS)

Shell

Users

File structure

 /bin , /usr/bin , /usr/local/bin  user executables

 /etc  configuration files

 /root , /home/users  Home directories

 /var , /srv, /usr  server data

 /lib, /lib64, /usr/lib , /usr/local/lib shared libraries

 /boot  Kernel , boot loaders

 /tmp Temporary files

 /proc , /sys  system information

 /media , /mnt mount points
 More info: http://www.comptechdoc.org/os/linux/commands/linux_crfilest.html

File system commands

 pwd - report your current directory

 cd <to where> - change your current directory

 ls <directory> -list contents of directory

 cp <old file> <new file> - copy

 mv <old file> <new file> - move (or rename)

 rm <file> -delete file(s)

 mkdir <new directory name> -make a directory

 mkdir -p /work/junk/{one,two,three,four}

 rmdir <directory> -remove an empty directory

 man <command name>

 man –k mail

$ man command gives you help on that command.

 ls command
 ls - list directory contents
 Usage : ls [OPTIONS] [FILE]

OPTIONS

 -l Use a long listing format

 -a Do not ignore entries starting with . (for e.g .forward)

 -h Print sizes in human readable format (e.g., 1K 234M 2G)

 -d List directory entries instead of contents

 -R List subdirectories recursively

 -r Reverse order while sorting

 -S Sort by file size

 -t Sort by modification time

 -1 List one file per line

Mostly used options in ls

 ls -l, ls –la, ls -1, ls -lh, ls -ltr, ls -lS

File permissions.

 There are 3 kinds of users in linux :

 you (user) u , your friends (group) g and everyone else (others) o.

 r - Read permissions

 w - Write permissions

 x - execute permissions

 d - Directory

 - File

 $ ls –l

 -rwxrw-r-- 1 santoshk cccf 224 Oct 14 17:57 display_time.sh

 drwxrwxr-x 2 santoshk cccf 4096 Oct 14 19:19 test_dir

 lrwxrwxrwx 1 santoshk cccf 7 Oct 14 19:54 link.txt -> nfs.txt

 For a file if x is set that user can execute the file

 For a directory if x is set that user can enter in that directory.

file permissions
File owner group

Changing File Permissions

 Make a file readable to your friends:

 $ chmod 765 <filename>

 7 -> 111 -> rwx

 6 -> 110 -> rw-

 5 -> 101 -> r-x

 -rwx rw- r-x 1 santoshk cccf 224 Oct 14 17:57 abcd.txt

 OR

$ chmod +w abcd.xt

$ chmod o+w abcd.xt

$ chmod g+x,o+w abcd.txt

Changing File Ownership

 Change who owns a file:

 $ chown <user> <filename>

 chown ksri:cccf abcd.txt
 chown –R ksri:cccf scritps_dir

 Change to which group the file belongs:

 $ chgrp <group> <filename>

 chgrp cccf abcd.txt

Getting Recursive

 copy a directory and its contents to other hosts ID:

$ scp -r <directory> santoshk@tifr.res.in:

 copy a directory and its contents:

$ cp -r <directory> <destibnation_dir>

 Find a pattern in a directory and its subdirectories:

$ grep -r <pattern> <destibnation_dir>

Redirecting output to a file with >

Redirecting input from a file with <

Redirection Symbols

 >file Make file the standard output

 <file Make file the standard input

 >>file Make file the standard output, appending to

 it if already exists

n>file Make file the output for file descriptor n

ls –l > abcd.txt Redirects output to abcd.txt

sort < account.txt Accepts the input from account.txt

mail -s “Test subject" santoshk@gmail.com <body.txt

ls –l santosh.txt 2> error.txt Redirects error to error.txt

ls –l santosh.txt 2>&1 error.txt Redirect output and error to error.txt

ls –l 2>&1 | tee –a log.txt

ls –l &> file

ls -l &>> test

ls –l >>log.txt 2>&1

Redirecting examples

Piping |

 Pipes take the output of the first program and feed that

output into the input of the next program.

 The output of a command can be piped to another

command for further processing

 Also sometimes known as “filters”.

Examples:

 ls –l | wc –l

 cat nfs.txt | more

last | grep “^root” | less

last | grep “^root” | cut -d -f 2 | less

grep “error” something.out | tail -1

(un)aliasing

 create shortcuts for yourself

 $ alias ll=‘ls –la’

 Use alias with no arguments to discover current aliases

 $ alias

alias rm=‘rm –I’

alias ll=‘ls -l --color=tty’

alias q='lpq -Plp1; lpq -Plp2; lpq -Plp3; lpq -Plp8; lpq -Pnew; lpq -Pold'

Type “unalias rm” to remove alias.

Login using ssh

 ssh – remote login program

 $ ssh –l santoshk cc1.tifr.res.in

 $ ssh santoshk@cc1.tifr.res.in

ssh client in windows is putty. Download from

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

Copy to remote machine : scp

 copy local to remote

$ scp <source file> user@machine:<path>

 copy remote to local

 $ scp user@machine:<path> <source file>

-p Preserves mode, time stamps

-r Recursively copy entire directories.

-v Verbose mode.

More commands

 grep - grep is global / regular expression / print

 grep –i santosh /etc/passwd

 find - search for files in a directory hierarchyreport uniq lines

 find ./ -name “*.txt” # Find *.txt files present directory

 date - date command prints or sets the system date and time

 date #Wed Oct 13 17:23:56 IST 2010

 date '+%d/%b/%Y %H:%M:%S' # displays 13/Oct/2010

 touch – creates the file if it doesn’t exists or changes date stamp to

current if exists

 touch abcd.txt #creates empty abcd.txt

 ln - Reference to another file or directory

 ln –s nfs.txt link.txt # creates symbolic link of nfs.txt

More commands

 sort <filename> - sort lines of text files

 sort -nr +0 -1 <filename> # sorts according to first field

 uniq <filename> - report uniq lines

 uniq –c <filename> # display the uniq entries with count

 tee - read from standard input and write to standard output and files

 find / “abc*.*” 2>&1 | tee –a log.txt

 #finds files and displays output and erro and tees to log.txt

 tar – backup / archiving utility

 tar –cvf abcd.tar /usr #create a tar file of /usr directory

 head - output the first part of files

 head -10 abcd.txt #displays top 10 lines of abcd.txt

More commands

 tail - output the last part of files

 tail -5 abcd.txt # displays last 5 lines of abcd.txt

 tail –f maillog.log # displays continuously the new

 appending data.

 cat - concatenate files and print on the standard output

 cat a.txt b.txt >>z.txt #appends a.txt and b.txt to z.txt

 more – view the contents of a text file one screen at a time

 echo - display a line of text\

 tr - translate or delete characters

 echo “Hello world” | tr '[a-z]' '[A-Z]' # will display HELLO WORLD

 expr - Evaluate an expression

 expr 5 * 2 # multiplies 5 and 2

Advance Commands

 Some of system related commands
exec, time, top, ps, logger, su, rpm, yum, dd, find, stat, lsof,

xargs,chattr

 Some of Network related commands
ping, netstat, ifconfig, ifup, ifdown, dig, nslookup, host, rsync, ftp,

ssh, telnet, wget, lynx, ntpdate, whois, tcptrack

vi editor

Introduction

 vi is text editor

 Original vi program was written by Bill Joy in 1976

 Use vi editor to:

 create text files

 edit text files

 The vi editor is not a text formatter like MS Word

 The current iteration of vi for Linux is called vim

Vi Improved

Starting vi

 Type vi <filename> at the shell prompt

 After pressing enter the command prompt

disappears and you see tilde(~) characters

on all the lines

 These tilde characters indicate that the line

is blank

Vi modes

 There are two modes in vi

 Command mode

 Input mode

 When you start vi by default it is in command

mode

 You enter the input mode through various

commands

 You exit the input mode by pressing the Esc

key to get back to the command mode

How to exit from vi

 First go to command mode

 press Esc There is no harm in pressing
Esc even if you are in command mode.
Your terminal will just beep and/or or
flash if you press Esc in command mode

 There are different ways to exit when
you are in the command mode

How to exit from vi
(comand mode)

 :q <enter> is to exit, if you have not made

any changes to the file

 :q! <enter> is the forced quit, it will discard

the changes and quit

 :wq <enter> is for save and Exit

 :x <enter> is same as above command

 The ! Character forces over writes, etc.

:wq!

 You can move around only when you are in

the command mode

 Arrow keys usually works(but may not)

 The standard keys for moving cursor are:

 h - for left

 l - for right

 j - for down

 k - for up

Moving Around

 w - to move one word forward

 b - to move one word backward

 $ - takes you to the end of line

 <enter> takes the cursor to the beginning of

next line

Moving Around

 - - (minus) moves the cursor to the first

character in the current line

 H - takes the cursor to the beginning of the

current screen(Home position)

 L - moves to the Lower last line

 M - moves to the middle line on the current

screen

Moving Around

 f - (find) is used to move cursor to a

particular character on the current line

 For example, fa moves the cursor from the

current position to next occurrence of ‘a’

 F - finds in the reverse direction

Moving Around

) - moves cursor to the next sentence

 } - move the cursor to the beginning of next

paragraph

 (- moves the cursor backward to the

beginning of the current sentence

 { - moves the cursor backward to the

beginning of the current paragraph

Moving Around

 Control-d scrolls the screen down (half screen)

 Control-u scrolls the screen up (half screen)

 Control-f scrolls the screen forward (full screen)

 Control-b scrolls the screen backward (full

screen).

 xG- to go at x line

 G- takes you to bottom line of file

 gg- takes you to first line

Moving Around

 To enter the text in vi you should first switch

to input mode

 To switch to input mode there are several

different commands

 a - Append mode places the insertion point

after the current character

 i - Insert mode places the insertion point before

the current character

Entering text

 I - places the insertion point at the beginning of

current line

 o - is for open mode and places the insertion

point after the current line

 O - places the insertion point before the current

line

 R - starts the replace (overwrite) mode

Entering text

Editing text

 x - deletes the current character

 d - is the delete command but pressing

only d will not delete anything you need to

press a second key

 dw - deletes to end of word

 dd - deletes the current line

 d0 - deletes to beginning of line

The change command

 c - this command deletes the text

specified and changes the vi to input

mode. Once finished typing you should

press <Esc> to go back to command

mode

 cw - Change to end of word

 cc - Change the current line

 There are many more options

Structure of vi command

 The vi commands can be used followed by a
number such as

n<command key(s)>

 For example dd deletes a line 5dd will delete
five lines.

 This applies to almost all vi commands

 This how you can accidentally insert a
number of characters into your document

Undo and repeat command

 u - undo the changes made by editing

commands

 . (dot or period) repeats the last edit

command

Copy, cut and paste

 yy - (yank) copy current line to buffer

 nyy - Where n is number of lines

 p - Paste the yanked lines from buffer to
the line below

 P - Paste the yanked lines from buffer to
the line above

(the paste commands will also work after the
dd or ndd command)

 vi Tricks

 Indent four lines: 4>>

 Will delete the character under the cursor,

and put it afterwards. In other words, it

swaps the location of two characters: xp

 Similar to xp, but swapping lines: ddp

Creating a shell script using vi

 Create a directory class

 Change into class

 vi myscript.sh

 inside the file enter following commands
clear

echo "==========="

echo "Hello World"

echo "==========="

sleep 3

clear

echo Host is $HOSTNAME

echo User is $USER

Creating a shell script using vi

 Save the file

 Change the permissions on myscript.sh

chmod 700 myscript.sh <enter>

 Now execute myscript.sh

 myscript.sh <enter>

 Did the script run?

 Why not?
 Hint, think about absolute vs relative path

 Type echo $PATH to see your PATH variable

 Try this ./myscript.sh <enter>

 The ./ mean right here in this directory!

References

 Unix shell programming -by Yashwant Kanetkar

 Unix Concepts and Applications –by Sumitabha Das

 http://www.grymoire.com/Unix/Sed.html

 http://www.grymoire.com/Unix/Awk.html

 http://www.grymoire.com/Unix/Quote.html

 http://www.grymoire.com/Unix/Find.html

http://www.grymoire.com/Unix/Sed.html
http://www.grymoire.com/Unix/Awk.html
http://www.grymoire.com/Unix/Quote.html
http://www.grymoire.com/Unix/Find.html

