

sed & awk

Santosh Kyadari (santoshk@tifr.res.in)

 --CCCF

 Date: 5 -9 -2012

mailto:santoshk@tifr.res.in

 sed

What is sed

 Stream editor

 Originally derived from “ed line editor”

 Used primarily for non interactive operations

 operates on data streams, hence its name

Why use sed

 Eliminate the routine editing tasks! (find,

replace, delete, append, insert)

Sed is designed to be especially useful in three

cases:

 To edit large files in bulk where manual

editing is difficult.

 Non interactive editing as part of a process.

 To edit any size file when the sequence of

editing commands is too complicated.

Sed usage

 Usage:

sed [options] 'address action/command' filename(s)

Example:

sed ‘’ test_sed.txt

sed –n ‘4,9 p’ foo

Sed: options

-n suppress of pattern space

-e add the script to the commands to be executed

-f Use a script file having actions

-i edit files in place

--help help

man sed will give more options

Examples :

Sed –n ‘4,9 p’ filename prints only lines 4 through 9

Sed –n –e ‘/example/,/tutorial/ !p’ –e ‘s/sed/abcd/p ‘ test_sed.txt

Sed –n –e ‘/example/,/tutorial/ !p; s/sed/abcd/p ‘ test_sed.txt

Sed -f sed1 test_sed.txt

sed -i 's/example/tutorial/g' test_sed.txt

Addresses and patterns in sed and awk

Addresses

 2 second line

 $ last line

 i,j from i-th to j-th line, inclusive. j can be $

 1,5 lines from 1 to 5

 7,$ lines from 7 to last line

Patterns

 ^ beginning of the line

 $ end of the line

Normally patterns are enclosed between forward slashes / /

/Microsoft/ selects the lines with Microsoft in the text

/^From/ selects the lines with From as starting of the Line

/From$/ selects the lines with From as end of the Line

/^$/ selects the empty lines

Range of pattern

/Microsoft/,/IBM/ selects the lines between the

 pattern range Microsoft and IBM

Sed: address

Each line read is counted, and one can use this information

to absolutely select which lines commands should be applied

to.

 1 first line

 2 second line

 ...

 $ last line

 i,j from i-th to j-th line, inclusive. j can be $

Examples :

sed -n '3,5 p' test_sed.txt prints only lines 3 to 5

sed -n '3,5 !p' test_sed.txt prints lines except 3 to 5

sed –n ‘1,$ p‘ test_sed.txt display all the lines as address 1,$

sed '' test_sed.txt display all the lines as address 1,$

sed ‘3 d’ test_sed.txt deletes line 3 and prints remaining lines

sed ‘/^$/d’ test_sed.txt will delete all empty lines

Sed: commands/actions

 p print lines

 d delete lines

 q quit after adress match

 c change lines

 a append

 i insert

 s substitute

 r Append text read from a filename

 w Write to a file

 ! Inversion operation of the command

Sed: commands/actions

Examples :
sed -n '3,5 p' test_sed.txt prints only lines 3 to 5

sed '3 q' test_sed.txt quits after reading 1 to 3 lines

Sed ‘3 d’ test_sed.txt deletes line 3 and prints remaining lines

Sed ‘3 c\ Linux and Unix’ test_sed.txt replaces line 3 with the text

sed 's/example/tutorial/g' test_sed.txt substitutes example with

tutorial

sed '3 r sed1' test_sed.txt append after line 3 with sed1 file

sed '2,5 w san' test_sed.txt write to the file san

sed -n '3,5 !p' test_sed.txt prints lines except 3 to 5

sed: Line Addressing

 using line numbers (like 1,3p)

 sed ‘3,4p’ foo.txt

 “For each line, if that line is the third through
fourth line, print the line”

 sed ‘4q’ foo.txt

 “For each line, if that line is the fourth line, stop”

 sed –n `3,4p’ foo.txt

 Since sed prints each line anyway, if we only
want lines 3&4 (instead of all lines with lines 3&4
duplicated) we use the -n

sed: Line addressing (...continued)

 sed –n ‘$p’ foo.txt

 “For each line, if that line is the last line, print”

 $ represent the last line

 Reversing line criteria (!)

 sed –n ‘3,$!p’ foo.txt

 “For each line, if that line is the third through
last line, do not print it, else print”

sed: Context/Pattern Addressing

 Use patterns/regular expressions rather than
explicitly specifying line numbers

 sed –n ‘/^ From: /p’ /hOme/ksri/mbox

 retrieve all the sender lines from the mailbox file

 “For each line, if that line starts with ‘From’, print it.”
Note that the / / mark the beginning and end of the
pattern to match

 sed -n '/tutorial/ !p' test_sed.txt

 ls –l | sed –n ‘/^.....w/p’

 “For each line, if the sixth character is a W, print”

sed: Substitution

 Strongest feature of sed

 Syntax is

[address] s/pattern/replace_str/flag

Substitutes “example” with “tutorial

sed 's/example/tutorial/g' test_sed.txt

sed ‘3,55 s/example/tutorial/g' test_sed.txt

substitute global

sed: Substitution - flags

n - A number (1 to 512) indicating that a

replacement should be made for only the nth

occurrence of the pattern.

g - Make changes globally on all occurrences

in the pattern space.

p - Print the contents of the pattern space.

w file - Write the contents of the

pattern space to file.

sed: Substitution example

sed ‘3,55 s/example/tutorial/4' test_sed.txt

sed ‘3,55 s/example/tutorial/g' test_sed.txt

sed ‘3,55 s/example/tutorial/p' test_sed.txt

sed ‘3,55 s/example/tutorial/w 1.txt' test_sed.txt

 awk

Cutting the fields in a text file

 Cut out selected fields of each line of a file

 cut [options] filename

 Options

 -d Delimiter default is space “ “

 -f Column/ field list

 -c Character position list

Example

cut -f 2 -d ",“ filename # displays second column

cut –f 1,5 –d “:“ passwd # displays user Id and

 Full name of user in passwd file

cut –c5,15 abcd.txt # displays characters from 1-15

awk

 Powerful pattern scanning and processing
language

 Names after its creators Aho, Weinberger and
Kernighan

 Most commands operate on entire line

 awk operates on fields within each line

What is awk

 awk reads from a file or from standard input, and outputs to its
standard output.

 awk has concepts of "file", "record" and "field".

 A file consists of records, which by default are the lines of the file. One
line becomes one record and each record will have fields.

 awk operates on one record at a time.

 A record consists of fields, which by default are separated by any
number of spaces or tabs or customized delimiter (eg “,” or “:”).

 Field number 1 is accessed with $1, field 2 with $2, and so on. $0 refers
to the whole record.

Why use awk

 awk is a programming language designed to search
for, match patterns, and perform actions on files.

Useful for:

 transform data files

 produce formatted reports

Programming constructs:

 format output lines

 arithmetic and string operations

 conditionals and loops

Awk : Usage

 awk [options] ‘script’ file(s)

 awk [options] –f scriptfile file(s)

Options:

 -F to change input field separator

 -f to name script file

Basic AWK Syntax

 consists of patterns & actions:
 awk [options] ‘pattern {action}’filename(s)

 if pattern is missing, action is applied to all lines
 if action is missing, the matched line is printed
 must have either pattern or action

Example:

awk '/for/' testfile

 prints all lines containing string “for” in testfile

awk: Processing model

awk [options]

‘BEGIN { command executed before any input is read}

Pattern { Main input loop for each line of input }

END {commands executed after all input is read}’

filename(s)

awk [options] ‘BEGIN { commands} Pattern { Main } END {commands}’ filename(s)

SOME SYSTEM VARIABLES

FS Field separator (default=whitespace)

RS Record separator (default=\n)

NF Number of fields in current record

NR Number of the current record

OFS Output field separator (default=space)

ORS Output record separator (default=\n)

FILENAME Current filename

awk: First example

Begin Processing

BEGIN {FS=“ ” ;print "Print Totals"}

Body Processing

{total = $1 + $2 + $3}

{print $1 " + " $2 " + " $3 " = "total}

End Processing

END {print "End Totals"}

Input and output files

 Input (cat totals) Output

22 78 44 Print Totals

66 31 70 22 +78 +44 =144

52 30 44 66 +31 +70 =167

88 31 66 52 +30 +44 =126

 88 +31 +66 =185

 End Totals

awk -f totals.awk totals

awk:command line processing

 İnput

1 clothing 3141

1 computers 9161

1 textbooks 21312

2 clothing 3252

2 computers 12321

2 supplies 2242

2 textbooks 15462

 Output

1 computers 9161

2 computers 2321

awk ‘{ if ($2 =="computers”){print}'sales.dat

awk: Arithmetic Operators

Operator Meaning Example

 + Add x + y

 - Subtract x – y

 * Multiply x * y

 / Divide x / y

 % Modulus x % y

 ^ Exponential x ^ y

Example:

% awk '$3 * $4 > 500 {print $0}' file

awk: Relational Operators

Operator Meaning Example

 < Less than x < y

 < = Less than or equal x < = y

 == Equal to x == y

 != Not equal to x != y

 > Greater than x > y

 > = Greater than or equal to x > = y

 ~ Matched by reg exp x ~ /y/

 !~ Not matched by req exp x !~ /y/

awk: Logical Operators

Operator Meaning Example

 && Logical AND a && b

 || Logical OR a || b

 ! NOT ! a

Examples:

awk '($2 > 5) && ($2 <= 15) {print $0}' file

awk '$3 == 100 || $4 > 50' file

awk: Range Patterns

 Matches ranges of consecutive input lines

Syntax:

 /pattern1/,/pattern2/ {action}

 pattern can be any simple pattern

 pattern1 turns action on

 pattern2 turns action off

awk: assignment operators

= assign result of right-hand-side expression to

 left-hand-side variable

++ Add 1 to variable

-- Subtract 1 from variable

+= Assign result of addition

-= Assign result of subtraction

*= Assign result of multiplication

/= Assign result of division

%= Assign result of modulo

^= Assign result of exponentiation

awk: control structures

 Conditional

 if-else

 Repetition

 for

 while

awk: if Statement

Syntax:
if (conditional expression)

 statement-1

else

 statement-2

Example:
if (NR < 3)

 print $2

else

 print $3

awk:for Loop

Syntax:
for (initialization; limit-test;

update)

 statement

Example:
for (i = 1; i <= NR; i++)

{

 total += $i

 count++

}

awk: while Loop

Syntax:
while (logical expression)

 statement

Example:
i = 1

while (i <= NF)

{

 print i, $i

 i++

}

References

 Unix Concepts and Applications –by Sumitabha Das

 http://www.grymoire.com/Unix/Sed.html

 http://www.grymoire.com/Unix/Awk.html

 http://www.grymoire.com/Unix/Quote.html

 http://www.grymoire.com/Unix/Find.html

 http://www.scribd.com/doc/60807668/SED-and-AWK-
101-Hacks

http://www.grymoire.com/Unix/Sed.html
http://www.grymoire.com/Unix/Awk.html
http://www.grymoire.com/Unix/Quote.html
http://www.grymoire.com/Unix/Find.html

