
Aditya lohia

Mayank Sharma

Object Oriented Programming

in PHP

• Conceptually, a class represents an object,

with associated methods and variables

What is a class?

<?php

class dog {

 public $name;

 public function bark() {

 echo „Woof!‟;

}

}

?>

Class Definition

An example class

definition for a dog.

The dog object has a

single attribute, the

name, and can

perform the action of

barking.

<?php

class dog {

 public $name;

 public function bark() {

 echo „Woof!‟;

}

}

?>

Class Definition

class dog {
Define the name

of the class.

<?php

class dog {

 var $name

 public function bark() {

 echo „Woof!‟;

}

}

?>

Class Definition

public $name;

Define an object

attribute (variable),

the dog’s name.

<?php

class dog {

 public $name;

 function bark() {

 echo „Woof!‟;

}

}

?>

Class Definition

public function bark() {

 echo „Woof!‟;

}

Define an

object action

(function), the

dog’s bark.

<?php

class dog {

 public $name;

 public function bark() {

 echo „Woof!‟;

 }

}

?>

Class Definition

}
End the class

definition

• The definition does not do anything by itself.

• It is a blueprint, or description, of an object.

• To do something, you need to use the class.

Class Defintion

<?php

require(„dog.class.php‟);

$puppy = new dog();

$puppy->name = „Rover‟;

echo “{$puppy->name} says ”;

$puppy->bark();

?>

Class Usage

<?php

require(„dog.class.php‟);

$puppy = new dog();

$puppy->name = „Rover‟;

echo “{$puppy->name} says ”;

$puppy->bark();

?>

Class Usage

require(„dog.class.php‟);

Include the class

definition

<?php

require(„dog.class.php‟);

$puppy = new dog();

$puppy->name = „Rover‟;

echo “{$puppy->name} says ”;

$puppy->bark();

?>

Class Usage

$puppy = new dog();

Create a new

instance of the

class.

<?php

require(„dog.class.php‟);

$puppy = new dog();

$puppy->name = „Rover‟;

echo “{$puppy->name} says ”;

$puppy->bark();

?>

Class Usage

$puppy->name = „Rover‟;

Set the name

variable of this

instance to

‘Rover’.

<?php

require(„dog.class.php‟);

$puppy = new dog();

$puppy->name = „Rover‟;

echo “{$puppy->name} says ”;

$puppy->bark();

?>

Class Usage

echo “{$puppy->name} says ”;

Use the name

variable of this

instance in an

echo statement..

<?php

require(„dog.class.php‟);

$puppy = new dog();

$puppy->name = „Rover‟;

echo “{$puppy->name} says ”;

$puppy->bark();

?>

Class Usage

$puppy->bark();
Use the dog

object bark

method.

$puppy->name = „Rover‟;

The most common mistake is to use more

than one dollar sign when accessing variables.

The following means something entirely different.

$puppy->$name = „Rover‟;

One dollar and one only…

If you need to use the class variables within
any class actions, use the special variable
$this in the definition:

class dog {

 public $name;

 public function bark()

 {

 echo $this->name.„ says Woof!‟;

 }

}

$this Keyword

• A constructor method is a function that is
automatically executed when the class is first
instantiated.

• Create a constructor by including a function
within the class definition with the
__construct name.

• Remember.. if the constructor requires
arguments, they must be passed when it is
instantiated!

Constructor methods

<?php

class dog {

 public $name;

 public function __construct($nametext)
 {

 $this->name = $nametext;

 }

 public function bark() {

 echo „Woof!‟;

}

}

?>

Constructor Example

Constructor function

Each instantiated object has its own local scope.

e.g. if 2 different dog objects are instantiated,
$puppy1 and $puppy2, the two dog names

$puppy1->name and $puppy2->name

are entirely independent..

Class Scope

• The real power of using classes is the property

of inheritance.

• The child classes ‘inherit’ all the methods and

variables of the parent class, and can add extra ones

of their own.

e.g. the child classes poodle inherits the

variable ‘name’ and method ‘bark’ from the

dog class, and can add extra ones.

Inheritance

dog

poodle alsatian

parent

children

There are three sizes of poodle - Standard,
Miniature, and Toy…

class poodle extends dog {
 public $type;

 public function set_type($height) {

 if ($height<10) {
 $this->type = „Toy‟;

 } elseif ($height>15) {
 $this->type = „Standard‟;

 } else {
 $this->type = „Miniature‟;
 }
 }
}

Inheritance example

There are three sizes of poodle - Standard,
Miniature, and Toy…

class poodle extends dog {
 public $type;

 public function set_type($height) {

 if ($height<10) {
 $this->type = „Toy‟;

 } elseif ($height>15) {
 $this->type = „Standard‟;

 } else {
 $this->type = „Miniature‟;
 }
 }
}

Inheritance example

class poodle extends dog {

Note the use of the
extends keyword to

indicate that the

poodle class is a child

of the dog class…

It is possible to over-ride a parent method
with a new method if it is given the same
name in the child class..

class poodle extends dog {

 …

 public function bark() {

 echo „Yip!‟;

 }

 …

}

Method Overriding

Access Specifiers defines the visibility for variables

and methods of Class.

There are three Access Specifiers in PHP

1)Public

2)Private

3)Protected

Access Specifiers

Used to implement Multiple inheritance.

Method is defined in Interface and

implemented in Derived Class

Variable Should be constant.

Interface

Thank You

