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Pythagoras

Natural numbers. Rational numbers p/q. Real numbers.
Ancients did not know real numbers. Dedekind 1860.
Completeness. Set theory.
Pythagoras (550 BC):

√
2 is irrational. Means, there is no such

number!
Right triangle theorem.
Crisis!

Nitin Nitsure (TIFR) Euclidean Geometry, Analysis and Physics 2 / 13



Euclid

Euclid Elements (300 BC): Definitions. Axioms. Theorems.
Proofs.
No real numbers, so no distances and lengths.
Fundamental role of congruence.
Direct meaning of congruence via ‘motion’.
Practical measurement of length is indeed via motion!
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Group of symmetries

The set of motions is a group E(2).
Composite. Associativity, identity, inverse.
Not commutative.
In all situations, symmetries form a group.
In return the properties of group sheds light on the structure.
Galois 1830.
Felix Klein 1870: Erlangen program.
Emmy Noether 1915 : Invariants, conservation laws.
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Coordinates

Descartes, Fermat, 1600.
How cartesian coordinate frames are laid.
How the group E(2) looks in coordinate terms.
Semidirect product R2 o O(2).
How to compare coordinates.
Euclidean geometry: study of properties of R2 and of structures
on it, which are invariant under E(2) (look the same in terms of all
cartesian coordinate frames).
Relation with Pythagorean metric ds2 = dx2 + dy2.
The metric gives rise to the affine structure.
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Orientation, spin structure

Left handed, right handed in Rn. Orientation.
Group SE(n) = Rn o SO(n).
Spin structure on Rn for n ≥ 2. Physical meaning. Elie Cartan
1913. Dirac 1928.
Group Rn o Spin(n).
Spin(2) = S1. Spin(3) = S3 = SU(2).
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Euclidean geometry
What structures to study on Rn? Subsets. Mountains on a plane.
Functions. Effect of E(n).
The oriented Euclidean line R1. Time. Sound.
Pure notes. Effect of translation: just the phase changes.
Eigenvectors.
Fourier 1820. Sound analyzed into pure notes. Fourier transform

f̂ (ω) =
1√
2π

∫
e−iωt f (t)dt

Re-constitution using pure notes: inverse Fourier transform

f̂ (t) =
1√
2π

∫
eiωt f̂ (ω)dω

Decomposition of L2(R1) under translations: Spectral
decomposition for id/dx . Momentum in QM.
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Decomposition of L2(R2) under SE(2)
Plane waves eip·x . Magnitude ||p||2 = p2

x + p2
y invariant under

SE(2).
Invariant operator of multiplication by ||p||2 in dual space
(‘momentum space’).
Laplacian

∆ = −
(
∂2

∂x2 +
∂2

∂y2

)
This operator is SE(2)-invariant. L2(R2) decomposes as the
continuous spectral decomposition of ∆.
Representation of R2 o S1 on L2(S1) by

((a, z) · f )(w) = e−i〈p,w−1a〉 f (z−1w)

The above for different positive values of ||p||, together with the
characters χn(a, z) = zn are exactly all the different irreducible
unitary representation of SE(2). (Frobenius ∼1900. Dirac,
Majorana, Wigner: 1928-1937. Mackey machine ∼1950:
generalization.)
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Galilean relativity

Spacetime R4. Events as points.
Inertial observer. Inertial frame. Coordinate transformation. The
Galilean group.
Affine space structure. The constant 1-form dt . Constant
Euclidean metric on the kernel of dt . Orientation.
The Galilean group G as the group of affine transformations of R4

which preserves orientation, dt and e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3.
G = R4 o H ⊂ R4 o SL(4,R).
Representation theory for G: apply Mackey machine and rep
theory for SO(3) and SE(2).
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Special relativity

The Lorentz group came first. Minkowski metric came later!
R4 with metric tensor dt2 − (1/c2)(dx2 + dy2 + dz2). Tensor
(1/c2)e0 ⊗ e0 − e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3. Limit as c →∞ gives
the two different tensors of Galileo. Affine structure is a
consequence of the metric!
Lorentz group (proper, orthochronous): L ⊂ SL(4,R), preserves
metric, orientation and time orientation, and fixes a chosen ‘origin’.
Poincare group (proper, orthochronous):
P = R4 o L ⊂ R4 o SL(4,R), preserves metric, orientation and
time orientation.
Sky. The group L as PSL(2,C). Universal cover (spin group) is
SL(2,C). P̂ = R4 o SL(2,C) universal cover of P.
In 2 + 1 dimension, L2,1 is PSL(2,R). Spin group (2-sheeted
cover) is SL(2,R).
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The main question of physics

The state of the world, w.r.t. an inertial coordinate frame.
Question: What will the state be, after some time? Time evolution
of the state.
What is the state w.r.t. other inertial frames.
Master question: how does the Poincare group P (or rather, P̂) act
on the set (or ‘space’) of all states?
Quantum mechanics: the state is represented by a non-zero
vector (unique up to a scalar multiple) in a Hilbert space. Inner
product in the Hilbert space is physically meaningful.
Unitary representations of P̂. (Projective representations of
SL(2,C) necessarily lift to linear reps.)
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Wigner’s physical interpretation

Any unitary representation of P̂ decomposes into a ‘sum’ (direct
integral) of irreducible unitary representations.
Irreducibility must correspond to physical indecomposability. So,
these must be the ‘elementary’ particles.
Wigner (1940) applied Frobenius theory (Mackey machine) to the
semi-direct product P̂ = R4 o SL(2,C) to get its irreducible unitary
representations in terms of those of SU(2) ⊂ SL(2,C) and of
SL(2,R) ⊂ SL(2,C).
Bargmann (1947) determined the irreducible unitary
representations SL(2,R). Harish Chandra.
Description of the representations via ‘fields’ and ‘field equations’.
Mass and spin.
Spin statistics theorem.
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Gauge theories

Physical properties apart from mass and spin (such as charge)
need more structure.
P̂-equivariant principal bundles on spacetime with other structure
groups (‘inner degrees of freedom’).
U(1)× SU(2)× SU(3). Yang-Mills theories.

The question of physics remains the same: what is the action of P̂
on the state space.
Challenge 1: Describe mathematically an interactive quantum
field theory on Minkowskian R4.
Challenge 2: State the ‘main question of physics’ in a spacetime
which is not Minkowski (as in general relativity), so there is no
symmetry group P̂, or even a time translation symmetry.
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