
LINUX
SHELL SCRIPTING

------Sagar MungsE------

 Shell Scripting

• Text files that contain sequences of UNIX commands,
created by a text editor

• No compiler required to run a shell script, because the
UNIX shell acts as an interpreter when reading script files

• After you create a shell script, you simply tell the OS that
the file is a program that can be executed, by using the
chmod command to change the mode to be executable

A few global (env) variables

Positional Parameters
A shell script is invoked with a set of command line
parameters each of these parameters are copied into

 $0 This variable that contains the name of the script

 $1, $2, ….. $n 1st, 2nd 3rd command line parameter

 $# Number of command line parameters

 $$ process ID of the shell

 $@ same as $* but as a list one at a time

 $? Return code ‘exit code’ of the last command

Example:

 sh ./ positinalparam_example.sh one two

Positional Parameters Example
$ sh ./positinalparam_example.sh
Content of positionalparam_example.sh
#!/bin/bash
echo "File Name: $0"
echo "First Parameter : $1"
echo "First Parameter : $2"
echo "Quoted Values: $@"
echo "Quoted Values: $*"
echo "Total Number of Parameters : $#"
echo "Process Number : $$"
echo "Exit Status : $?"

read command
• The read command allows you to prompt for input and store it in a

variable.

• Example (read.sh)

– #!/bin/bash

 echo -n “Enter name of file to delete: ”

 read file

 echo “Type 'y' to remove it, 'n' to change your mind ... ”

 rm -i $file

 echo "That was YOUR decision!"

• Line 3 creates a variable called file and assigns the input from
keyboard to it. Then the value of this variable is retrieved by putting
the '$' in at its beginning.

crontab
• crontab can schedule to run a command or a script once or

periodically like minutely, hourly, daily, weekly, monthly, yearly.

cronatb –l lists the jobs of the user

crontab –e allows to edit the jobs

Format
* * * * *

| | | | |

| | | | +--- day of week (0 - 6) (Sunday=0)

| | | +-------- month (1 - 12)

| | +------------- day of month (1 - 31)

| +------------------ hour (0 - 23)

+----------------------- min (0 - 59)

Crontab examples
every 0th min of 0th hour (12am) script will

run

0 0 * * * /bin/sh /home/santoshk/bd/sc

every min

* * * * * /bin/sh /home/santoshk/bd/sc

once in every 30 minutes the script will run

*/30 * * * * /bin/sh home/santoshk/ping.sh

>/dev/null

every wednesday at 2.30 a.m. the script will

run

30 2 * * 3 /bin/sh home/santoshk/ping.sh

>/dev/null

Arithmetic Comparison

[n1 -eq n2] (true if n1 same as n2, else false)

[n1 -ge n2] (true if n1 >= n2, else false)

[n1 -le n2] (true if n1 <= equal to n2, else false)

[n1 -ne n2] (true if n1 is not same as n2, else false)

[n1 -gt n2] (true if n1 > n2, else false)

[n1 -lt n2] (true if n1 < n2, else false)

String Comparison

• “$string1” = “$string2” True if equal

• “$string1” == “$string2” True if equal

• “$string1” != “$string2” True if not equal

• -n “$string” True if length of string is greater then 0

• -z “$string” True if length string is zero

Examples

[$1 = $2] (true if s1 same as s2, else false)

[$1 != $2] (true if s1 not same as s2, else false)

[$1] (true if s1 is not empty, else false)

[-n $1] (true if s1 has a length greater then 0, else false)

[-z $2] (true if s2 has a length of 0, otherwise false)

File Conditions
-d file True if file a directory

-f file True if the file exits and is not directory

-s file True if the file exist and greater than 0

-e file True if the file exist

-c file True if the file is character special file

-b file True if the file is block special file

-r file True if file exists and you have read permissions

-w file True if file exists and you have write permissions

-x file True if file exists and you have excute permissions

-k file True if file exists and its sticky bit set

Logical Conditions
! negate (NOT) a logical expression
-a logically AND two logical expressions
&& logically AND two logical expressions
-o logically OR two logical expressions
|| logically OR two logical expressions

 /,*,% -first priority

 +,- -second priority

In Logical
 ! not

 -lt,-gt,-le,-ge,-eq,-ne relational

 -a and

 -o or

Conditional Statements (if)
if command executes successfully
then
 execute command
elif this command executes successfully
then
 execute this command
 and execute this command
else
 execute default command
fi
However- elif and/or else clause can be omitted.

#You can use below statement in nested conditions.
break: The break statement is used to jump out of loop.
continue: Using continue we can go to the next iteration in loop.
exit: it is used to exit the execution of program.(exit is function not a
statement)

Example

 #! /bin/sh
 # number is +ve, zero or -ve
 echo –e "enter a number:\c"
 read number

 if [“$number” -lt 0]
 then
 echo “Input is negative"
 elif [“$number” -eq 0]
 then
 echo “ Input is zero”
 else
 echo “Input is positive”
 fi

Loops
For Loop example:
To check only file name from directory
 for i in `ls -1`
 do
 echo $i
 done

While Loop Example:
#To get the value of first field from file inputfile.csv

 while read line

 do

 ID=echo $line | cut -f 1 -d “,”

 echo $ID

 done < inputfile.csv

Switch Case

simplifies matching when you have a list of choices

echo -n "Enter the name of vehicle for rent. e.g. car, van, jeep:"

read rental

case $rental in

 "car") echo "For $rental Rs.20 per k/m";;

 "van") echo "For $rental Rs.10 per k/m";;

 "jeep") echo "For $rental Rs.5 per k/m";;

 "bicycle") echo "For $rental 20 paisa per k/m";;

 *) echo "Sorry, I can not get a $rental for you";;

esac

Function example

Functions enable you to break down the overall functionality of a

script into smaller, logical subsections, which can then be called

upon to perform their individual task when it is needed.

$ sh ./function.sh

Contents of function.sh

SayHello()

{ echo “Hello $LOGNAME, Have nice computing”

 }

SayHello

Output:

Hello opr, Have nice computing

Debugging shell scripts

• There may be times where a shell script does
something unexpected (due to user error).

• It may be helpful to see exactly what commands the
shell is currently executing.

• This can be done in several ways

– Call your script with /bin/bash –x myscript.sh

– Insert the line set –vx near the top of the script

This is useful to monitor your script line by line.

References

• Unix shell programming -by Yashwant Kanetkar

• Unix Concepts and Applications –by Sumitabha Das

• http://www.grymoire.com/Unix/Sed.html

• http://www.grymoire.com/Unix/Awk.html

• http://www.grymoire.com/Unix/Quote.html

• http://www.grymoire.com/Unix/Find.html

http://www.grymoire.com/Unix/Sed.html
http://www.grymoire.com/Unix/Awk.html
http://www.grymoire.com/Unix/Quote.html
http://www.grymoire.com/Unix/Find.html

THANK YOU

