LINUX
SHELL SCRIPTING

——-SAGAR MUNGSE——-

Shell Scripting

* Text files that contain sequences of UNIX commands,
created by a text editor

* No compiler required to run a shell script, because the
UNIX shell acts as an interpreter when reading script files

e After you create a shell script, you simply tell the OS that
the file is a program that can be executed, by using the
chmod command to change the mode to be executable

A few global (env) variables

SHELL Current shell

DISPLAY Used by X-Windows system to identify the
display

HOME Fully qualified name of your login directory

PATH Search path for commands

MANPATH Search path for <man> pages

PS1 & PS2 Primary and Secondary prompt strings

USER Your login name

TERM terminal type

PWD Current working directory

Positional Parameters

A shell script is invoked with a set of command line
parameters each of these parameters are copied into

= SO This variable that contains the name of the script
" 51,52, Sn 15t 2nd 3rd command line parameter
= S# Number of command line parameters
= SS process ID of the shell
= S@ same as S* but as a list one at a time
= S? Return code ‘exit code’ of the last command
Example:
sh ./ positinalparam_example.sh one two

Positional Parameters Example

S sh ./positinalparam_example.sh
Content of positionalparam_example.sh
#!/bin/bash

echo "File Name: SO"

echo "First Parameter : S1"

echo "First Parameter : S2"

echo "Quoted Values: S@"

echo "Quoted Values: $*"

echo "Total Number of Parameters : S#"
echo "Process Number : SS"

echo "Exit Status : S?"

read command

* The read command allows you to prompt for input and store it in a
variable.

 Example (read.sh)
— #!/bin/bash
echo -n “Enter name of file to delete:”
read file
echo “Type 'y' to remove it, 'n' to change your mind ... ”
rm -i Sfile
echo "That was YOUR decision!"

* Line 3 creates a variable called file and assigns the input from
keyboard to it. Then the value of this variable is retrieved by putting
the 'S' in at its beginning.

crontab

* crontab can schedule to run a command or a script once or
periodically like minutely, hourly, daily, weekly, monthly, yearly.

cronatb -1 lists the jobs of the user
crontab -e allows to edit the jobs
Format

* * *

*

I I I
| | +--- day of week (0 - 6) (Sunday=0)
I

E— - month (1 - 12)
B day of month (1 - 31)
4 = . — — — — — — — — hour (0 - 23)

4 — — — — . ——— min (0 - 59)

Crontab examples

every O*® min of O* hour (l2am) script will
run

0 0 * *x * /bin/sh /home/santoshk/bd/sc
every min
* *x * * * /pbin/sh /home/santoshk/bd/sc

once in every 30 minutes the script will run

*/30 * * * * /bin/sh home/santoshk/ping.sh
>/dev/null

every wednesday at 2.30 a.m. the script will
run

30 2 * * 3 /bin/sh home/santoshk/ping.sh
>/dev/null

Arithmetic Comparison

' nl-eqn2]
'nl-gen2]
' nl-len2]
'nl-nen2 |
' nl-gtn2]
' nl-ltn2]

(true if n1 same as n2, else false)

(true if n1 >=n2, else false)

(true if n1 <= equal to n2, else false)
(true if n1 is not same as n2, else false)
(true if n1 > n2, else false)

(true if n1 < n2, else false)

String Comparison

e “Sstringl” = “Sstring2” True if equal

e “Sstringl” == “Sstring2” True if equal

e “Sstringl” |= “Sstring2” True if not equal

* -n “Sstring” True if length of string is greater then O

e -7 “Sstring” True if length string is zero

Examples

[S$1=52] (true if s1 same as s2, else false)

[S11=S2] (true if s1 not same as s2, else false)

[S1] (true if s1 is not empty, else false)

[-nS1] (true if s1 has a length greater then 0, else false)

[-252] (true if s2 has a length of 0, otherwise false)

-d file
-f file
-s file
-e file
-c file
-b file
-r file
-w file
-x file
-k file

File Conditions

True if file a directory

True if the file exits and is not directory

True if the file exist and greater than O

True if the file exist

True if the file is character special file

True if the file is block special file

True if file exists and you have read permissions
True if file exists and you have write permissions
True if file exists and you have excute permissions
True if file exists and its sticky bit set

Logical Conditions

! negate (NOT) a logical expression

-a ogically AND two logical expressions
&& ogically AND two logical expressions
-0 ogically OR two logical expressions

| | logically OR two logical expressions

/,*,% first priority

+ - -second priority
In Logical

! not

-It,-gt,-le,-ge,-eq,-ne relational

-a and

-0 or

Conditional Statements (if)
if
then

elif
then

else

fi
However- elif and/or else clause can be omitted.

#You can use below statement in nested conditions.

break: The break statement is used to jump out of loop.

continue: Using continue we can go to the next iteration in loop.
exit: it is used to exit the execution of program.(exit is function not a
statement)

Example

#! /bin/sh

number is +ve, zero or -ve
echo —e "enter a number:\c"
read number

if [“Snumber” -1t 0]
then
echo “Input is negative"
elif [“Snumber” -eq 0]
then
echo “ Input is zero”
else
echo “Input is positive”
fi

Loops

For Loop example:
To check only file name from directory
for iin 'Is-1
do
echo Si
done

While Loop Example:
#To get the value of first field from file inputfile.csv
while read line
do
ID=echo $line | cut -f1-d*“”
echo $ID
done < inputfile.csv

Switch Case

simplifies matching when you have a list of choices
echo -n "Enter the name of vehicle for rent. e.g. car, van, jeep:"
read rental
case $rental in
"car") echo "For $rental Rs.20 per k/m";;
"van") echo "For $rental Rs.10 per k/m";;
"jeep") echo "For $rental Rs.5 per k/m";;
"bicycle") echo "For $rental 20 paisa per k/m";;
*) echo "Sorry, I can not get a $rental for you";;

€SacC

Function example

Functions enable you to break down the overall functionality of a
script into smaller, logical subsections, which can then be called
upon to perform their individual task when it is needed.

S sh ./function.sh

Contents of function.sh

SayHello()

{ echo “Hello SLOGNAME, Have nice computing”

}
SayHello

Hello opr, Have nice computing

There may be times where a shell script does
something unexpected (due to user error).

It may be helpful to see exactly what commands the
shell is currently executing.

This can be done in several ways
— Call your script with /bin/bash —x myscript.sh
— Insert the line set —vx near the top of the script
This is useful to monitor your script line by line.

References

Unix shell programming -by Yashwant Kanetkar
Unix Concepts and Applications —by Sumitabha Das
http://www.grymoire.com/Unix/Sed.htm|

http://www.grymoire.com/Unix/Awk.html

http://www.grymoire.com/Unix/Quote.html

http://www.grymoire.com/Unix/Find.html

http://www.grymoire.com/Unix/Sed.html
http://www.grymoire.com/Unix/Awk.html
http://www.grymoire.com/Unix/Quote.html
http://www.grymoire.com/Unix/Find.html

THANK YOU

