A bottom-up reconstruction of new physics at Large Hadron Collider

Ritesh K. Singh

Institut für Theoretische Physik und Astrophysik Universität Würzburg

Tata Institute of Fundamental Research

Mumbai, January 13, 2010

nac

- The Standard Model
 - Building block
 - The particles and forces
- 2 Beyond the Standard Model
 - The approach
 - New physics
 - New particles
- 3 New physics with top quark
 - Top quark at the edge
 - Top polarization
 - Top polarization measurement
- 4 Search for Extra-dimensions
 - Features of the extra-dimension
 - Flat extra-dimension at LHC
 - Warped extra-dimension at LHC

5 Conclusions

Beyond the Standard Model New physics with top quark Search for Extra-dimensions Conclusions

Building block The particles and forces

The Standard Model

イロト イロト イヨト イヨト

Sac

э

Beyond the Standard Model New physics with top quark Search for Extra-dimensions Conclusions

Building block The particles and forces

Sub-atomic world

イロト イポト イヨト イヨト

э

Building block The particles and forces

Sub-atomic world

• It was long believed that matter is made of atoms and by mid 19th century it was an established fact.

A B + A B +
 A
 B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

Sar

∃ >

Building block The particles and forces

Sub-atomic world

- It was long believed that matter is made of atoms and by mid 19th century it was an established fact.
- By early 20th century we started to probe the Sub-atomic world.

Image: A math a math

T N

Building block The particles and forces

Sub-atomic world

- It was long believed that matter is made of atoms and by mid 19th century it was an established fact.
- By early 20th century we started to probe the Sub-atomic world.
- Nucleus was identified in 1911.

Image: A math a math

Building block The particles and forces

Sub-atomic world

- It was long believed that matter is made of atoms and by mid 19th century it was an established fact.
- By early 20th century we started to probe the Sub-atomic world.
- Nucleus was identified in 1911.

Particle list:

• 1932: *e*, *p*, *n* were the fundamental building blocks.

Building block The particles and forces

Sub-atomic world

- It was long believed that matter is made of atoms and by mid 19th century it was an established fact.
- By early 20th century we started to probe the Sub-atomic world.
- Nucleus was identified in 1911.

Particle list:

- 1932: *e*, *p*, *n* were the fundamental building blocks.
- 1950: e, p, $n, \mu, \nu_e, \nu_\mu, \pi^{\pm}, \pi^0, K^0, K^{\pm}$ etc. So many of particle cannot be fundamental.

I D F I A B F I B F

Building block The particles and forces

Sub-atomic world

- It was long believed that matter is made of atoms and by mid 19th century it was an established fact.
- By early 20th century we started to probe the Sub-atomic world.
- Nucleus was identified in 1911.

Particle list:

- 1932: e, p, n were the fundamental building blocks.
- 1950: e, p, $n, \mu, \nu_e, \nu_\mu, \pi^{\pm}, \pi^0, K^0, K^{\pm}$ etc. So many of particle cannot be fundamental.

Certain pattern emerged among the zoo of particles.

+

1 D F 1 B F 1 B F

Building block The particles and forces

Sub-atomic world

- It was long believed that matter is made of atoms and by mid 19th century it was an established fact.
- By early 20th century we started to probe the Sub-atomic world.
- Nucleus was identified in 1911.

Particle list:

- 1932: e, p, n were the fundamental building blocks.
- 1950: e, p, $n, \mu, \nu_e, \nu_\mu, \pi^{\pm}, \pi^0, K^0, K^{\pm}$ etc. So many of particle cannot be fundamental.

Certain pattern emerged among the zoo of particles.

+

 \Rightarrow These particle must be build of something else.

Image: A math a math

Building block The particles and forces

The quark model

The matter particles were divide in two groups:

- Hadrons: $p, n, \pi^{\pm}, \pi^{0}, K^{\pm}$ etc. particles that can interact strongly.
- Leptons: $e, \nu_e, \mu, \nu_\mu, \tau$, etc. particles that cannot interact strongly.

Building block The particles and forces

The quark model

The matter particles were divide in two groups:

- Hadrons: $p, n, \pi^{\pm}, \pi^{0}, K^{\pm}$ etc. particles that can interact strongly.
- Leptons: $e, \nu_e, \mu, \nu_\mu, \tau$, etc. particles that cannot interact strongly.

Leptons

- are fundamental particles
- interact only through electromagnetic and weak interactions.
- can be seen in free state.

Image: A matrix

Building block The particles and forces

The quark model

The matter particles were divide in two groups:

- Hadrons: $p, n, \pi^{\pm}, \pi^{0}, K^{\pm}$ etc. particles that can interact strongly.
- Leptons: $e, \nu_e, \mu, \nu_\mu, \tau$, etc. particles that cannot interact strongly.

Leptons

- are fundamental particles
- interact only through electromagnetic and weak interactions.
- can be seen in free state.

Hadrons

- are not fundamental particles
- interact through strong weak and electromagnetic interactions.
- are bound states of quarks that cannot be seen in free state.

1 D F 1 B F 1 B F

Building block The particles and forces

The quark model

The matter particles were divide in two groups:

- Hadrons: $p, n, \pi^{\pm}, \pi^{0}, K^{\pm}$ etc. particles that can interact strongly.
- Leptons: $e, \nu_e, \mu, \nu_\mu, \tau$, etc. particles that cannot interact strongly.

Leptons

- are fundamental particles
- interact only through electromagnetic and weak interactions.
- can be seen in free state.

Hadrons

- are not fundamental particles
- interact through strong weak and electromagnetic interactions.
- are bound states of quarks that cannot be seen in free state.

Quarks carry color quantum number and fractional electric charges. (bottom-up)

Beyond the Standard Model New physics with top quark Search for Extra-dimensions Conclusions

Building block The particles and forces

Stucture of the Standard Model

프 > 프

Beyond the Standard Model New physics with top quark Search for Extra-dimensions Conclusions

Building block The particles and forces

Stucture of the Standard Model

Gravity not included.

Image: A matrix

ŀ

-

Beyond the Standard Model New physics with top quark Search for Extra-dimensions Conclusions

Building block The particles and forces

Stucture of the Standard Model

Gravity not included.

Gauge groups: $SU(3)_c \times SU(2)_L \times U(1)_Y$

Sac

-

The Standard Model Beyond the Standard Model New physics with top guark

Search for Extra-dimensions Conclusions Building block The particles and forces

Stucture of the Standard Model

Gravity not included.

Gauge groups: $SU(3)_c \times SU(2)_L \times U(1)_Y$

Additional particle: Higgs boson

 $\frac{SU(3)_c}{SU(2)_L} \text{ singlet}$ Y = 1

Leads to masses of the particles via spontaneous symmetry breaking.

-

Image: A matrix

(top-down)

The Standard Model Beyond the Standard Model New physics with top guark

Search for Extra-dimensions Conclusions Building block The particles and forces

Stucture of the Standard Model

Gravity not included.

Gauge groups: $SU(3)_c \times SU(2)_L \times U(1)_Y$

Additional particle: Higgs boson

 $\frac{SU(3)_c}{SU(2)_L} \text{ singlet}$ Y = 1

Leads to masses of the particles via spontaneous symmetry breaking.

I D F I A B F I B F

(top-down)

Describes almost all observed phenomenon

The approach New physics New particles

Beyond the Standard Model

イロト イポト イヨト イヨト

Sac

э

The approach New physics New particles

Bottom-up vs Top-down

The approach New physics New particles

Bottom-up vs Top-down

Top-down

• Symmetry: gauge symmetry, space time symmetry etc.

Bottom-up

イロト 不得下 不同下 不同下

э

The approach New physics New particles

Bottom-up vs Top-down

Top-down

- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries ⇒ Lagrangian.

Bottom-up

→ Ξ →

э

Sac

・ロト ・ 同ト ・ ヨト

The approach New physics New particles

Bottom-up vs Top-down

Top-down

- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries ⇒ Lagrangian.
- Self consistancy of Lagrangian: gauge anomaly etc.

Bottom-up

→ Ξ →

э

Sac

・ロト ・ 同ト ・ ヨト

The approach New physics New particles

Bottom-up vs Top-down

Top-down

- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries ⇒ Lagrangian.
- Self consistancy of Lagrangian: gauge anomaly etc.
- Mechanisms: spontaneous symmetry breaking, phase transitions etc.

Bottom-up

・ロト ・ 同ト ・ ヨト

I ∃ ▶

э

The approach New physics New particles

Bottom-up vs Top-down

Top-down

- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries ⇒ Lagrangian.
- Self consistancy of Lagrangian: gauge anomaly etc.
- Mechanisms: spontaneous symmetry breaking, phase transitions etc.
- Predictions for experiments.

Bottom-up

・ロト ・ 同ト ・ ヨト

∃ ∃ ≥

The approach New physics New particles

Bottom-up vs Top-down

Top-down

- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries ⇒ Lagrangian.
- Self consistancy of Lagrangian: gauge anomaly etc.
- Mechanisms: spontaneous symmetry breaking, phase transitions etc.
- Predictions for experiments.

Bottom-up

 Observables: σ, asymmetries, correlations etc.

イロト イポト イヨト イヨト

э

The approach New physics New particles

Bottom-up vs Top-down

Top-down

- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries ⇒ Lagrangian.
- Self consistancy of Lagrangian: gauge anomaly etc.
- Mechanisms: spontaneous symmetry breaking, phase transitions etc.
- Predictions for experiments.

Bottom-up

- Observables: σ, asymmetries, correlations etc.
- Particle content: observed or required to explain observations.

イロト イポト イヨト イヨト

э

The approach New physics New particles

Bottom-up vs Top-down

Top-down

- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries ⇒ Lagrangian.
- Self consistancy of Lagrangian: gauge anomaly etc.
- Mechanisms: spontaneous symmetry breaking, phase transitions etc.
- Predictions for experiments.

Bottom-up

- Observables: σ, asymmetries, correlations etc.
- Particle content: observed or required to explain observations.
- Quantum number: ad hoc assignments to explain observations.

イロト イポト イヨト イヨト

э

The approach New physics New particles

Bottom-up vs Top-down

Top-down

- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries ⇒ Lagrangian.
- Self consistancy of Lagrangian: gauge anomaly etc.
- Mechanisms: spontaneous symmetry breaking, phase transitions etc.
- Predictions for experiments.

Bottom-up

- Observables: σ, asymmetries, correlations etc.
- Particle content: observed or required to explain observations.
- Quantum number: ad hoc assignments to explain observations.
- Possible patterns in the particles and their quantum numbers ⇒ Symmetry.

イロト イポト イヨト イヨト

э

The approach New physics New particles

Bottom-up vs Top-down

Top-down

- Symmetry: gauge symmetry, space time symmetry etc.
- Matter content: fermions, scalars and their quantum number under symmetries ⇒ Lagrangian.
- Self consistancy of Lagrangian: gauge anomaly etc.
- Mechanisms: spontaneous symmetry breaking, phase transitions etc.
- Predictions for experiments.

Bottom-up

- Observables: σ, asymmetries, correlations etc.
- Particle content: observed or required to explain observations.
- Quantum number: ad hoc assignments to explain observations.
- Possible patterns in the particles and their quantum numbers ⇒ Symmetry.

イロト イポト イヨト イヨト

э

Sac

Lagrangian

The approach New physics New particles

An example of top-quark

・ロト ・ 同ト ・ ヨト

Sac

1

The approach New physics New particles

An example of top-quark

-

-

The approach New physics New particles

An example of top-quark

Top-down

- Mass: Heavy
- Charge: +2/3

Bottom-up

• Mass: $173.1 \pm 1.3 \text{ GeV}$

-

1

• Charge: not +4/3 at 95% C.L.

The approach New physics New particles

An example of top-quark

Top-down

- Mass: Heavy
- Charge: +2/3
- Color Quantum number: 3

Bottom-up

- Mass: $173.1 \pm 1.3 \text{ GeV}$
- Charge: not +4/3 at 95% C.L.
- Color Quantum number: 3

3 ×
The approach New physics New particles

An example of top-quark

Top-down

- Mass: Heavy
- Charge: +2/3
- Color Quantum number: 3
- Iso-spin: +1/2

Bottom-up

- Mass: 173.1 ± 1.3 GeV
- Charge: not +4/3 at 95% C.L.
- Color Quantum number: 3

(日)

∃ >

• Iso-spin: +1/2

The approach New physics New particles

An example of top-quark

Top-down

- Mass: Heavy
- Charge: +2/3
- Color Quantum number: 3
- Iso-spin: +1/2
- Hypercharge: +1

Bottom-up

- Mass: 173.1 ± 1.3 GeV
- Charge: not +4/3 at 95% C.L.
- Color Quantum number: 3

∃ >

- Iso-spin: +1/2
- Hypercharge: +1 ???

The approach New physics New particles

An example of top-quark

Top-down

- Mass: Heavy
- Charge: +2/3
- Color Quantum number: 3
- Iso-spin: +1/2
- Hypercharge: +1
- Spin : 1/2

Bottom-up

- Mass: 173.1 ± 1.3 GeV
- Charge: not +4/3 at 95% C.L.

イロト イポト イラト イラト

- Color Quantum number: 3
- Iso-spin: +1/2
- Hypercharge: +1 ???
- Spin : possibly 1/2

The approach New physics New particles

An example of top-quark

Top-down

- Mass: Heavy
- Charge: +2/3
- Color Quantum number: 3
- Iso-spin: +1/2
- Hypercharge: +1
- Spin : 1/2
- Decay modes:

$$t \rightarrow b W^{-}$$

$$t \rightarrow b H^+$$

$$t
ightarrow c Z^0$$
 etc.

Bottom-up

- Mass: 173.1 ± 1.3 GeV
- Charge: not +4/3 at 95% C.L.
- Color Quantum number: 3
- Iso-spin: +1/2
- Hypercharge: +1 ???
- Spin : possibly 1/2
- Decay modes: $t \rightarrow b \ W^+$

$$t
ightarrow c ~Z^0~({
m Br} < 0.1)$$

イロト イボト イヨト イヨト

The approach New physics New particles

From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

• an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,

nac

The approach New physics New particles

From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,

The approach New physics New particles

From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,

Image: A math a math

The approach New physics New particles

From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,

The approach New physics New particles

From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).

The approach New physics New particles

From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).
- neutrino masses

Image: A mathematical states and a mathem

The approach New physics New particles

From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).
- neutrino masses
- dark matter candidate

Image: A math and a math a

The approach New physics New particles

From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).
- neutrino masses
- dark matter candidate

Many solution to the theoretical issues are proposed:

Image: A math and a math a

The approach New physics New particles

From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).
- neutrino masses
- dark matter candidate

Many solution to the theoretical issues are proposed:

SUSY

Fermion mass Scale hierarchy

Image: A matrix

The approach New physics New particles

From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).
- neutrino masses
- dark matter candidate

Many solution to the theoretical issues are proposed:

The approach New physics New particles

From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).
- neutrino masses
- dark matter candidate

Many solution to the theoretical issues are proposed:

SUSY	Extra Dim	Techni Color			
	CP violation	CP violation			
Fermion mass	Fermion mass	Fermion mass			
Scale hierarchy	Scale hierarchy	Scale hierarchy		-	-
	Ritesh Singh	New physics at LHC	1 = 1 1 = 1	=	<i>v</i>)

The approach New physics New particles

From Standard to New physics

The Standard Model has been tested to a high accuracy, but it still lacks

- an experimental test of spontaneous symmetry breaking phenomenon or discovery of Higgs boson,
- radiative stability of Higgs boson mass,
- hierarchy of scales, electro-weak vs Planck scale,
- first principle understanding of CP violation,
- hierarchy of Yukawa couplings (fermion masses).
- neutrino masses
- dark matter candidate

Many solution to the theoretical issues are proposed:

SUSY	Extra Dim	Techni Color	Little Higgs
	CP violation	CP violation	CP violation
Fermion mass	Fermion mass	Fermion mass	Fermion mass
Scale hierarchy	Scale hierarchy	Scale hierarchy	Scale hierarchy
	Ritech Singh	New physics at LHC	

The approach New physics New particles

New particles

All new physics models introduce new symmetries and particles.

Scalars	Fermions	Vectors

・ロト ・ 同ト ・ ヨト

3.1

1

- 4

The approach New physics New particles

New particles

All new physics models introduce new symmetries and particles.

Scalars	Fermions	Vectors
Higgs, sfermions, techni-pions etc.		

・ロト ・ 同ト ・ ヨト

3.1

1

- 4

The approach New physics New particles

New particles

All new physics models introduce new symmetries and particles.

Scalars	Fermions	Vectors
Higgs, sfermions, techni-pions etc.	gaugino, higgsino, heavy fermion partners.	

・ロト ・ 同ト ・ ヨト

3.1

1

- 4

The approach New physics New particles

New particles

All new physics models introduce new symmetries and particles.

Scalars	Fermions	Vectors
Higgs, sfermions,	gaugino, higgsino,	KK-excitations of gauge
techni-pions etc.	heavy fermion partners.	bosons, heavy bosons.

・ロト ・ 同ト ・ ヨト

3.1

1

- 4

The approach New physics New particles

New particles

All new physics models introduce new symmetries and particles.

Scalars	Fermions	Vectors
Higgs, sfermions, techni-pions etc.	gaugino, higgsino, heavy fermion partners.	KK-excitations of gauge bosons, heavy bosons.
Productions : s-channel resonance, pair production, associated production		

I D F I A B F I B F

Dac

The approach New physics New particles

New particles

All new physics models introduce new symmetries and particles.

Scalars

Higgs, sfermions, techni-pions etc.

Productions : s-channel resonance, pair production, associated production

Fermions

gaugino, higgsino, heavy fermion partners.

Productions : pair production, associated production.

Vectors

KK-excitations of gauge bosons, heavy bosons.

The approach New physics New particles

New particles

All new physics models introduce new symmetries and particles.

Scalars

Higgs, sfermions, techni-pions etc.

Productions : s-channel resonance, pair production, associated production

Fermions

gaugino, higgsino, heavy fermion partners.

Productions : pair production, associated production.

Vectors

KK-excitations of gauge bosons, heavy bosons.

Productions :

s-channel resonance, pair production, associated production

The approach New physics New particles

New particles

All new physics models introduce new symmetries and particles.

Scalars

Higgs, sfermions, techni-pions etc.

Productions : s-channel resonance, pair production, associated production

Signature : threshold behaviour, polarization, 2-body decay, cascade decay.

Fermions

gaugino, higgsino, heavy fermion partners.

Productions : pair production, associated production.

Vectors

Image: A math and a math a

KK-excitations of gauge bosons, heavy bosons.

Productions :

s-channel resonance, pair production, associated production

The approach New physics New particles

New particles

All new physics models introduce new symmetries and particles.

Scalars

Higgs, sfermions, techni-pions etc.

Productions : s-channel resonance, pair production, associated production

Signature :

threshold behaviour, polarization, 2-body decay, cascade decay.

Fermions

gaugino, higgsino, heavy fermion partners.

Productions : pair production, associated production.

Signature :

threshold behaviour, polarization, 2-body decay, cascade decay.

Vectors

KK-excitations of gauge bosons, heavy bosons.

Productions :

s-channel resonance, pair production, associated production

The approach New physics New particles

New particles

All new physics models introduce new symmetries and particles.

Scalars

Higgs, sfermions, techni-pions etc.

Productions : s-channel resonance, pair production, associated production

Signature :

threshold behaviour, polarization, 2-body decay, cascade decay.

Fermions

gaugino, higgsino, heavy fermion partners.

Productions : pair production, associated production.

Signature :

threshold behaviour, polarization, 2-body decay, cascade decay.

Vectors

KK-excitations of gauge bosons, heavy bosons.

Productions :

s-channel resonance, pair production, associated production

Signature :

polarization, 2-body decay, cascade decay.

The approach New physics New particles

New particles

All new physics models introduce new symmetries and particles.

Scalars

Higgs, sfermions, techni-pions etc.

Productions : s-channel resonance, pair production, associated production

Signature : threshold behaviour, polarization, 2-body decay, cascade decay.

Fermions

gaugino, higgsino, heavy fermion partners.

Productions : pair production, associated production.

Signature : threshold behaviour, polarization, 2-body decay, cascade decay.

Vectors

KK-excitations of gauge bosons, heavy bosons.

Productions :

s-channel resonance, pair production, associated production

Signature : polarization, 2-body decay, cascade decay.

Top quark at the edge Top polarization Top polarization measurement

New physics with top quark

イロト イポト イヨト イヨト

990

Э

Top quark at the edge Top polarization Top polarization measurement

Top quark: A looking glass

The mass of the top-quark is very large ($m_t \sim 173 {
m GeV}$)

・ロト ・ 同ト ・ ヨト

- - E - K

Top quark at the edge Top polarization Top polarization measurement

Top quark: A looking glass

The mass of the top-quark is very large ($m_t \sim 173 {
m GeV}$)

• top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.

I D F I A B F I B F

Top quark at the edge Top polarization Top polarization measurement

Top quark: A looking glass

The mass of the top-quark is very large $(m_t \sim 173 {
m GeV})$

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.
- its decay width ($\Gamma_t \sim 1.5 \text{ GeV}$) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.

I D F I A B F I B F

Top quark at the edge Top polarization Top polarization measurement

Top quark: A looking glass

The mass of the top-quark is very large $(m_t \sim 173 {
m GeV})$

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.
- its decay width ($\Gamma_t \sim 1.5 \text{ GeV}$) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.
- the decay lepton angular distribution is insensitive to the anomalous tbW couplings, and hence a pure probe of new physics in top-production process; observed for top-pair production at e^+e^- (Rindani, Grzadkowski) as well as $\gamma\gamma$ collider (Ohkuma,Godbole).

イロト イロト イヨト

Top quark at the edge Top polarization Top polarization measurement

Top quark: A looking glass

The mass of the top-quark is very large $(m_t \sim 173 {
m GeV})$

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.
- its decay width ($\Gamma_t \sim 1.5 \text{ GeV}$) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.
- the decay lepton angular distribution is insensitive to the anomalous tbW couplings, and hence a pure probe of new physics in top-production process; observed for top-pair production at e^+e^- (Rindani, Grzadkowski) as well as $\gamma\gamma$ collider (Ohkuma,Godbole).
- leptons from top decay provide a **clean** and **un-contaminated** probe of top-production mechanism.

・ロト ・ 同ト ・ ヨト ・ ヨト

Top quark at the edge Top polarization Top polarization measurement

Top quark: A looking glass

The mass of the top-quark is very large $(m_t \sim 173 {
m GeV})$

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.
- its decay width ($\Gamma_t \sim 1.5 \text{ GeV}$) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.
- the decay lepton angular distribution is insensitive to the anomalous tbW couplings, and hence a pure probe of new physics in top-production process; observed for top-pair production at e^+e^- (Rindani, Grzadkowski) as well as $\gamma\gamma$ collider (Ohkuma,Godbole).
- leptons from top decay provide a **clean** and **un-contaminated** probe of top-production mechanism.

We have a clean looking glass for new physics.

・ロト ・ 同ト ・ ヨト ・ ヨト

Top quark at the edge Top polarization Top polarization measurement

Anomalous top decay

JHEP 0612, 021 (2006), [hep-ph/0605100]

メロト メポト メヨト メヨト

Sac

1

Anomalous *tbW* vertex :

$$\Gamma^{\mu} = \frac{g}{\sqrt{2}} \left[\gamma^{\mu} (f_{1L} P_L + f_{1R} P_R) - \frac{i \sigma^{\mu\nu}}{m_W} (p_t - p_b)_{\nu} (f_{2L} P_L + f_{2R} P_R) \right]$$

Top quark at the edge Top polarization Top polarization measurement

Anomalous top decay

JHEP 0612, 021 (2006), [hep-ph/0605100]

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

Anomalous *tbW* vertex :

$$\Gamma^{\mu} = \frac{g}{\sqrt{2}} \left[\gamma^{\mu} (f_{1L} P_L + f_{1R} P_R) - \frac{i \sigma^{\mu\nu}}{m_W} (p_t - p_b)_{\nu} (f_{2L} P_L + f_{2R} P_R) \right]$$

- In the SM, $f_{1L} = 1$, $f_{1R} = 0$, $f_{2L} = 0$, $f_{2R} = 0$.
- Contribution from f_{1R} , f_{2L} are proportional to m_b .
Top quark at the edge Top polarization Top polarization measurement

Anomalous top decay

JHEP 0612, 021 (2006), [hep-ph/0605100]

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

Anomalous *tbW* vertex :

$$\Gamma^{\mu} = \frac{g}{\sqrt{2}} \left[\gamma^{\mu} (f_{1L} P_L + f_{1R} P_R) - \frac{i \sigma^{\mu\nu}}{m_W} (p_t - p_b)_{\nu} (f_{2L} P_L + f_{2R} P_R) \right]$$

- In the SM, $f_{1L} = 1$, $f_{1R} = 0$, $f_{2L} = 0$, $f_{2R} = 0$.
- Contribution from f_{1R} , f_{2L} are proportional to m_b .

$$\frac{1}{\Gamma_t} \frac{d\Gamma_t}{d\cos\theta_f} = \frac{1}{2} \left(1 + \alpha_f \ P_t \ \cos\theta_f \right)$$
$$\alpha_I = 1 - \mathcal{O}(f_i^2)$$
$$\alpha_b = -\left[\frac{m_t^2 - 2m_W^2}{m_t^2 + 2m_W^2} \right] + \Re(f_{2R}) \left[\frac{8m_t m_W (m_t^2 - m_W^2)}{(m_t^2 + 2m_W^2)^2} \right] + \mathcal{O}\left(\frac{m_b}{m_W}, f_i^2 \right)$$

Top quark at the edge Top polarization Top polarization measurement

Lepton distribution

JHEP 0612, 021 (2006), [hep-ph/0605100]

・ロト ・ 日 ト ・ モ ト ・ モ ト

Dac

Top quark at the edge Top polarization Top polarization measurement

Lepton distribution

イロト イポト イラト イラト

Sar

Top quark at the edge Top polarization Top polarization measurement

Lepton distribution

イロト イポト イラト イラト

Lepton distribution is independent of anomalous tbW coupling if

• t-quark is on-shell; narrow-width approximation for t-quark,

Top quark at the edge Top polarization Top polarization measurement

Lepton distribution

イロト イポト イラト イラト

- t-quark is on-shell; narrow-width approximation for t-quark,
- anomalous couplings f_{1R} , f_{2R} and f_{2L} are small,

Top quark at the edge Top polarization Top polarization measurement

Lepton distribution

イロト イポト イラト イラト

- t-quark is on-shell; narrow-width approximation for t-quark,
- anomalous couplings f_{1R} , f_{2R} and f_{2L} are small,
- narrow-width approximation for W-boson,

Top quark at the edge Top polarization Top polarization measurement

Lepton distribution

イロト イポト イラト イラト

- t-quark is on-shell; narrow-width approximation for t-quark,
- anomalous couplings f_{1R} , f_{2R} and f_{2L} are small,
- narrow-width approximation for W-boson,
- b-quark is mass-less,

Top quark at the edge Top polarization Top polarization measurement

Lepton distribution

- t-quark is on-shell; narrow-width approximation for t-quark,
- anomalous couplings f_{1R} , f_{2R} and f_{2L} are small,
- narrow-width approximation for W-boson,
- *b*-quark is mass-less,
- $t \rightarrow bW(\ell \nu_{\ell})$ is the only decay channel for *t*-quark.

Top quark at the edge Top polarization Top polarization measurement

Lepton distribution

・ロト ・ 同ト ・ ヨト ・ ヨト

San

Lepton distribution is independent of anomalous tbW coupling if

- t-quark is on-shell; narrow-width approximation for t-quark,
- anomalous couplings f_{1R} , f_{2R} and f_{2L} are small,
- narrow-width approximation for W-boson,
- *b*-quark is mass-less,
- $t \rightarrow bW(\ell \nu_{\ell})$ is the only decay channel for *t*-quark.

 \Rightarrow Lepton distribution from top decay is pure probe of possible new physics in the top production process.

Top quark at the edge Top polarization Top polarization measurement

Polarization or *t*-quark: top-down

JHEP 0612, 021 (2006), [hep-ph/0605100]

Polarized cross-sections

$$\begin{split} \sigma(\lambda, \lambda') &= \int \frac{d^3 p_t}{2 E_t (2\pi)^3} \begin{pmatrix} n-1 \\ \prod_{i=1}^{d^3 p_i} \\ \frac{d^3 p_i}{2 E_i (2\pi)^3} \end{pmatrix} \frac{(2\pi)^4}{2l} \delta^4 \left(k_A + k_B - p_t - \left(\sum_{i=1}^{n-1} p_i \right) \right) \rho(\lambda, \lambda') \\ & \text{where } \rho(\lambda, \lambda') = \mathcal{M}(\lambda, \ldots) \mathcal{M}^*(\lambda', \ldots) \end{split}$$

・ロト ・ 同ト ・ ヨト

∃ >

Top quark at the edge Top polarization Top polarization measurement

Polarization or *t*-quark: top-down

JHEP 0612, 021 (2006), [hep-ph/0605100]

Polarized cross-sections

$$\begin{split} \sigma(\lambda,\lambda') &= \int \frac{d^3 p_t}{2E_t(2\pi)^3} \begin{pmatrix} n{-}1 \\ \prod_{i=1}^{d} \frac{d^3 p_i}{2E_i(2\pi)^3} \end{pmatrix} \frac{(2\pi)^4}{2l} \delta^4 \left(k_A + k_B - p_t - \left(\sum_{i=1}^{n-1} p_i \right) \right) \rho(\lambda,\lambda') \\ & \text{where } \rho(\lambda,\lambda') = \mathcal{M}(\lambda,\ldots) \ \mathcal{M}^*(\lambda',\ldots) \end{split}$$

Total cross-section: $\sigma_{tot} = \sigma(+,+) + \sigma(-,-)$

I D F I A B F I B F

Sac

∃ >

Top quark at the edge Top polarization Top polarization measurement

Polarization or *t*-quark: top-down

JHEP 0612, 021 (2006), [hep-ph/0605100]

Polarized cross-sections

$$\begin{split} \sigma(\lambda, \lambda') &= \int \frac{d^3 p_t}{2E_t (2\pi)^3} \begin{pmatrix} n-1 \\ \prod_{i=1}^{d^3 p_i} \\ \frac{2E_i (2\pi)^3}{2E_i (2\pi)^3} \end{pmatrix} \frac{(2\pi)^4}{2l} \delta^4 \left(k_A + k_B - p_t - \left(\sum_{i=1}^{n-1} p_i \right) \right) \rho(\lambda, \lambda') \\ & \text{where } \rho(\lambda, \lambda') = \mathcal{M}(\lambda, \ldots) \mathcal{M}^*(\lambda', \ldots) \end{split}$$

Total cross-section: $\sigma_{tot} = \sigma(+,+) + \sigma(-,-)$

Polarization density matrix :

$$P_t = \frac{1}{2} \begin{pmatrix} 1+\eta_3 & \eta_1 - i\eta_2 \\ \eta_1 + i\eta_2 & 1-\eta_3 \end{pmatrix},$$

$$\eta_{3} = (\sigma(+,+) - \sigma(-,-)) / \sigma_{tot}$$

$$\eta_{1} = (\sigma(+,-) + \sigma(-,+)) / \sigma_{tot}$$

$$i \eta_{2} = (\sigma(+,-) - \sigma(-,+)) / \sigma_{tot}$$

I D F I A B F I B F

Sac

∃ >

Top quark at the edge Top polarization Top polarization measurement

Polarization or *t*-quark: bottom-up

JHEP 0612, 021 (2006), [hep-ph/0605100]

San

Polarization of *t*-quark through decay asymmetries:

$$\alpha_{f} \frac{\eta_{3}}{2} = \frac{\sigma(p_{f}.s_{3} < 0) - \sigma(p_{f}.s_{3} > 0)}{\sigma(p_{f}.s_{3} < 0) + \sigma(p_{f}.s_{3} > 0)}$$

$$\alpha_{b} = -0.4$$

$$\alpha_{f} \frac{\eta_{2}}{2} = \frac{\sigma(p_{f}.s_{2} < 0) - \sigma(p_{f}.s_{2} > 0)}{\sigma(p_{f}.s_{2} < 0) + \sigma(p_{f}.s_{2} > 0)}$$

$$\alpha_{f} \frac{\eta_{1}}{2} = \frac{\sigma(p_{f}.s_{1} < 0) - \sigma(p_{f}.s_{1} > 0)}{\sigma(p_{f}.s_{1} < 0) + \sigma(p_{f}.s_{1} > 0)}$$

$$\begin{split} s_i \cdot s_j &= -\delta_{ij} \qquad p_t \cdot s_i = 0\\ \text{For } p_t^{\mu} &= E_t (1, \beta_t \sin \theta_t, 0, \beta_t \cos \theta_t), \text{ we have}\\ s_1^{\mu} &= (0, -\cos \theta_t, 0, \sin \theta_t), \ s_2^{\mu} &= (0, 0, 1, 0), \ s_3^{\mu} = E_t (\beta_t, \sin \theta_t, 0, \cos \theta_t) / m_t. \end{split}$$
Ptlong is implemented in SHERPA.

Top quark at the edge Top polarization Top polarization measurement

Lepton's azimuthal distribution

JHEP 0612, 021 (2006), [hep-ph/0605100]

$$A_{\ell} = \frac{\sigma(\cos\phi_1 > 0) - \sigma(\cos\phi_1 < 0)}{\sigma(\cos\phi_1 > 0) + \sigma(\cos\phi_1 < 0)}$$

Sac

Used for:

Top quark at the edge Top polarization Top polarization measurement

Lepton's azimuthal distribution

JHEP 0612, 021 (2006), [hep-ph/0605100]

Sac

Lab frame azimuthal distribution of leptons:

$$A_{\ell} = \frac{\sigma(\cos\phi_1 > 0) - \sigma(\cos\phi_1 < 0)}{\sigma(\cos\phi_1 > 0) + \sigma(\cos\phi_1 < 0)}$$

Used for:

I D > I A P >

Top quark at the edge Top polarization Top polarization measurement

Lepton's azimuthal distribution

JHEP 0612, 021 (2006), [hep-ph/0605100]

Lab frame azimuthal distribution of leptons:

Distribution of all the decay particles.

Sac

Top quark at the edge Top polarization Top polarization measurement

Top polarization at LHC

Boudjema, Porod and RS: Under progress

$$\Delta_{lb} = \frac{1}{\sigma} \left| \frac{d\sigma}{d\phi_l} - \frac{d\sigma}{d\phi_b} \right|$$

Depends upon:
• Top polarization
• p_t^T distribution
 $\sigma = 131 \text{ pb} \quad \eta_3 = -0.196$
 $\Delta_{lb} = 0.35$
Cuts: No cuts
Model: SM

Sac

Ritesh Singh Ne

< □ > < 同 >

Top quark at the edge Top polarization Top polarization measurement

Top polarization at LHC

Boudjema, Porod and RS: Under progress

$$pp \rightarrow \tilde{t}_1 \overline{\tilde{t}}_1 \rightarrow t \chi_1^0 \overline{t} \chi_1^0$$

$$\Delta_{lb} = \frac{1}{\sigma} \left| \frac{d\sigma}{d\phi_l} - \frac{d\sigma}{d\phi_b} \right|$$

Depends upon:
• Top polarization
• p_t^T distribution
 $\sigma = 1.44 \text{ fb} \quad \eta_3 = +0.184$
 $\Delta_{lb} = 0.12$
Cuts: No cuts
Model: MSSM
 $M_{\tilde{t}_1} = 355 \text{ GeV}, \ m_{\chi} = 164$
GeV $Br(\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0) = 0.76$

Ritesh Singh

Top quark at the edge Top polarization Top polarization measurement

Top polarization at LHC

Boudjema, Porod and RS: Under progress

$$\Delta_{lb} = \frac{1}{\sigma} \left| \frac{d\sigma}{d\phi_l} - \frac{d\sigma}{d\phi_b} \right|$$

Depends upon:
• Top polarization
• p_t^T distribution
 $\sigma = 3.36 \text{ pb} \quad \eta_3 = +0.819$
 $\Delta_{lb} = 0.40$
Cuts: $m_{tt} \in [2.5, 3.5] \text{ TeV}$
Model: SM+ $g^{(1)}$
 $M_g = 3\text{TeV}, \Gamma_g = 500 \text{ GeV}$

Sac

New physics at LHC

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Search for Extra-dimensions

イロト イポト イヨト イヨト

Э

Sac

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

World with extra-dimesions

In models with extra space dimensions, the additional dimensions are compact.

Image: A matched black

ヨト

Sar

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

World with extra-dimesions

In models with extra space dimensions, the additional dimensions are compact.

Particle in a box Compact extra dim

I D > I A P >

⊒ ⊳

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

World with extra-dimesions

In models with extra space dimensions, the additional dimensions are compact.

Particle in a box

Compact extra dim

 \Rightarrow Infinite potential well or Particle in a box

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

World with extra-dimesions

In models with extra space dimensions, the additional dimensions are compact.

Particle in a box

Compact extra dim

- ⇒ Infinite potential well or Particle in a box
- \Rightarrow Infinite tower of equi-spaced (R^{-1}) states

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

World with extra-dimesions

In models with extra space dimensions, the additional dimensions are compact.

Particle in a box

Compact extra dim

- ⇒ Infinite potential well or Particle in a box
- $\Rightarrow \text{ Infinite tower of} \\ \text{equi-spaced } (R^{-1}) \text{ states}$

Mass spectrum of photon: 0, (R^{-1}) GeV, $2(R^{-1})$ GeV, ...

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

World with extra-dimesions

In models with extra space dimensions, the additional dimensions are compact.

イロト イポト イヨト

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

World with extra-dimesions

In models with extra space dimensions, the additional dimensions are compact.

Particle in a box

Compact extra dim

- ⇒ Infinite potential well or Particle in a box
- $\Rightarrow \text{ Infinite tower of} \\ \text{equi-spaced } (R^{-1}) \text{ states}$

Mass spectrum of photon: 0, (R^{-1}) GeV, $2(R^{-1})$ GeV, ...

Near-degenerate spectrum

• All partilcles have infinite tower of states.

I D F I A B F I B F

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

World with extra-dimesions

In models with extra space dimensions, the additional dimensions are compact.

Particle in a box

Compact extra dim

- ⇒ Infinite potential well or Particle in a box
- $\Rightarrow \text{ Infinite tower of} \\ \text{equi-spaced } (R^{-1}) \text{ states}$

Mass spectrum of photon: 0, (R^{-1}) GeV, $2(R^{-1})$ GeV, ...

Near-degenerate spectrum

- All partilcles have infinite tower of states.
- We have $\gamma^{(1)}$, $Z^{(1)}$, $g^{(1)}$, $t^{(1)}$ etc. at nearly the same mass (R^{-1}) Gev.

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

World with extra-dimesions

In models with extra space dimensions, the additional dimensions are compact.

Particle in a box

Compact extra dim

- ⇒ Infinite potential well or Particle in a box
- $\Rightarrow \text{ Infinite tower of} \\ \text{equi-spaced } (R^{-1}) \text{ states}$

Mass spectrum of photon: 0, (R^{-1}) GeV, $2(R^{-1})$ GeV, ...

Near-degenerate spectrum

- All partilcles have infinite tower of states.
- We have $\gamma^{(1)}$, $Z^{(1)}$, $g^{(1)}$, $t^{(1)}$ etc. at nearly the same mass (R^{-1}) Gev.

Several particles with same QN as in SM and large (R^{-1}) but near-degenerate mass.

イロト イポト イラト イラト

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Flat extra-dimensions and top quarks

Under progress

In the models of flat extra-dimensions, there is a KK-tower of excitations corresponding to each SM gauge bosons and fermions.

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Flat extra-dimensions and top quarks

Under progress

In the models of flat extra-dimensions, there is a KK-tower of excitations corresponding to each SM gauge bosons and fermions.

The channel under study at the LHC:

 $q \bar{q} \rightarrow V \rightarrow t \bar{t}$

I D F I A B F I B F

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Flat extra-dimensions and top quarks

Under progress

In the models of flat extra-dimensions, there is a KK-tower of excitations corresponding to each SM gauge bosons and fermions.

The channel under study at the LHC:

$$q\bar{q} \rightarrow V \rightarrow t\bar{t}$$

$$V\equiv\gamma,~Z,~g,~\gamma^{(1)},~Z^{(1)},~g^{(1)}$$

Image: A matrix and a matrix

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Flat extra-dimensions and top quarks

Under progress

In the models of flat extra-dimensions, there is a KK-tower of excitations corresponding to each SM gauge bosons and fermions.

The channel under study at the LHC:

$$q\bar{q}
ightarrow V
ightarrow t\bar{t}$$

$$V \equiv \gamma, \ Z, \ g, \ \gamma^{(1)}, \ Z^{(1)}, \ g^{(1)}$$

The pure SM background:

$$gg
ightarrow t\overline{t}$$

Image: A math a math

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Flat extra-dimensions and top quarks

Under progress

In the models of flat extra-dimensions, there is a KK-tower of excitations corresponding to each SM gauge bosons and fermions.

The channel under study at the LHC:

$$q\bar{q} \rightarrow V \rightarrow t\bar{t}$$

$$V \equiv \gamma, \ Z, \ g, \ \gamma^{(1)}, \ Z^{(1)}, \ g^{(1)}$$

The pure SM background:

$$gg
ightarrow t\overline{t}$$

All KK-excitations contribute to a resonance in $m_{t\bar{t}}$ distribution. The presence of Z and $Z^{(1)}$ is responsible for finite polarization of top quark.

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Flat extra-dimensions and top quarks

Under progress

Sac

-

-

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Flat extra-dimensions and top quarks

Under progress

For $M_{KK}=2$ TeV, and $|m_{t\bar{t}}-M_{KK}|<50$ GeV,

Models	$\sigma(pp \rightarrow t\bar{t})$ (fb)	P_t
SM	77.9	-1.33×10^{-3}
$\mathit{SM} + \gamma^{(1)}$	185	-2.55×10^{-4}
$SM + Z^{(1)}$	150	-3.26×10^{-1}
$SM+g^{(1)}$	1700	-6.13×10^{-5}
$SM + V_{KK}$	1900	-5.78×10^{-2}
Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Flat extra-dimensions and top quarks

Under progress

Sac

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Flat extra-dimensions and top quarks

Under progress

Sac

Image: A matched black

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Warped extra-dimension and top quark

Under progress

In universal wrapped extra dimension model, with fermion localization in the fifth dimensions, one has differing couplings of V_{KK} .

I D F I A B F I B F

∃ >

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Warped extra-dimension and top quark

Under progress

In universal wrapped extra dimension model, with fermion localization in the fifth dimensions, one has differing couplings of V_{KK} .

For electro weak boson:

$$f_i \overline{f}_i V := \left(A_V \ T_3^{f_i} + B_V \ Q^{f_i} \right) Q_V(f_i) \ ; i = L, R$$

I D F I A B F I B F

∃ >

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Warped extra-dimension and top quark

Under progress

In universal wrapped extra dimension model, with fermion localization in the fifth dimensions, one has differing couplings of V_{KK} .

For electro weak boson:

$$f_i \overline{f}_i V := \left(A_V \ T_3^{f_i} + B_V \ Q^{f_i} \right) Q_V(f_i) \ ; i = L, R$$

For strong boson:

$$f\overline{f}V := Q_V(f_R) R_V P_R + Q_V(f_L) L_V P_L$$

I D F I A B F I B F

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Warped extra-dimension and top quark

Under progress

In universal wrapped extra dimension model, with fermion localization in the fifth dimensions, one has differing couplings of V_{KK} .

For electro weak boson:

$$f_i \overline{f}_i V := \left(A_V \ T_3^{f_i} + B_V \ Q^{f_i} \right) Q_V(f_i) \ ; i = L, R$$

For strong boson:

$$f\bar{f}V := Q_V(f_R) R_V P_R + Q_V(f_L) L_V P_L$$

• can explain fermion mass hierarchy,

I D F I A B F I B F

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Warped extra-dimension and top quark

Under progress

In universal wrapped extra dimension model, with fermion localization in the fifth dimensions, one has differing couplings of V_{KK} .

For electro weak boson:

$$f_i \overline{f}_i V := \left(A_V \ T_3^{f_i} + B_V \ Q^{f_i} \right) Q_V(f_i) \ ; i = L, R$$

For strong boson:

$$f\overline{f}V := Q_V(f_R) R_V P_R + Q_V(f_L) L_V P_L$$

- can explain fermion mass hierarchy,
- can explain A_{FB}^{b} anomaly thourgh $Z Z^{'(1)}$ mixing,

1 D F 1 B F 1 B F

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Warped extra-dimension and top quark

Under progress

In universal wrapped extra dimension model, with fermion localization in the fifth dimensions, one has differing couplings of V_{KK} .

For electro weak boson:

$$f_i \overline{f}_i V := \left(A_V \ T_3^{f_i} + B_V \ Q^{f_i} \right) Q_V(f_i) \ ; i = L, R$$

For strong boson:

$$f\overline{f}V := Q_V(f_R) R_V P_R + Q_V(f_L) L_V P_L$$

- can explain fermion mass hierarchy,
- can explain A_{FB}^{b} anomaly thourgh $Z Z^{'(1)}$ mixing,
- can explain A_{FB}^{t} anomaly thourgh $g^{(1)}$ contribution at Tevatron,

イロト イポト イラト イラト

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Warped extra-dimension and top quark

Under progress

In universal wrapped extra dimension model, with fermion localization in the fifth dimensions, one has differing couplings of V_{KK} .

For electro weak boson:

$$f_i \overline{f}_i V := \left(A_V \ T_3^{f_i} + B_V \ Q^{f_i} \right) Q_V(f_i) \ ; i = L, R$$

For strong boson:

$$f\overline{f}V := Q_V(f_R) R_V P_R + Q_V(f_L) L_V P_L$$

- can explain fermion mass hierarchy,
- can explain A^b_{FB} anomaly thourgh $Z Z'^{(1)}$ mixing,
- can explain A_{FB}^{t} anomaly thourgh $g^{(1)}$ contribution at Tevatron,
- can be probed at LHC upto $M_{KK} = 3$ TeV through polarization.

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Warped extra-dimension and top quark

Under progress

Sac

 $\Gamma_{g^{(1)}}=627$ GeV, $\Gamma_{Z^{(1)}}=75$ GeV, $\Gamma_{\gamma^{(1)}}=137$ GeV

(Nucl. Phys. B797, 1, (2008))

-

Features of the extra-dimension Flat extra-dimension at LHC Warped extra-dimension at LHC

Warped extra-dimension and top quark

Under progress

In the case of warped extra-dimension:

- there are too many free parameters for the fit.
- the "Weak resonance model" fails
- the "Strong resonance model" fits well with "wrong" values of the couplings.
- more observables are needed to establish the presence of extra-dimensions.

to conclude

Ritesh Singh New physics at LHC

イロト イロト イヨト イヨト

Э

Sac

to conclude

• There are many models of physics beyond the SM.

イロト イポト イヨト イヨト

Dac

to conclude

- There are many models of physics beyond the SM.
- These models are expected to have significant signals at upcoming LHC.

San

to conclude

- There are many models of physics beyond the SM.
- These models are expected to have significant signals at upcoming LHC.
- Many of the models will have similar collider signature.

I D F I A B F I B F

to conclude

- There are many models of physics beyond the SM.
- These models are expected to have significant signals at upcoming LHC.
- Many of the models will have similar collider signature.
- We need a model-independent i.e. a bottom-up approach to the signatures to establish or rule out some models.

I D F I A B F I B F

Beyond the conclusions....

- Spin measurement using azimuthal distribution (arXiv:0903.4705)
- Spin assesment in off-shell decays: A case of gluino (Under progress)
- Markov-Chain-Monte-Carlo analysis of MSSM-UG models (arXiv:0906.5048)
- MCMC analysis of CPV-MSSM and GHU-MSSM (Under progress)

Image: A matrix