Naturally light uncolored and heavy colored superparticles

Gautam Bhattacharyya

Saha Institute of Nuclear Physics, Kolkata

G.B., B. Bhattacherjee, T.T. Yanagida and N. Yokozaki PLB 725 (2013) 339 <u>and</u> PLB 730 (2014) 231

G.B., T.T. Yanagida and N. Yokozaki, PLB 749 (2015) 82

Motivation

- Squarks and gluino are heavy

 - FCNC ⇒ first two generation squarks heavy and degenerate
 - Non-observation of squarks and gluino in 7 and 8 TeV LHC
- Sleptons and weak gauginos may be light
 - Muon (g-2) has $> 3 \sigma$ discrepancy \Rightarrow light smuons
 - Neutralino as DM expected in $\mathcal{O}(100)$ GeV range
 - Light staus may slightly alter Higgs diphoton rate
 - Collider bounds on them are not so strong

How to reconcile this splitting between colored and uncolored superparticles?

GMSB – basic introduction

- Information on SUSY breaking is transmitted to observable sector by gauge interaction. FCNC is suppressed.
- 'Messenger sector' comprising of heavy chiral superfields which have gauge charges. SUSY is broken in messenger sector by interaction with 'spurion'. Consider a set of vector-like superfields $M+\bar{M}$ (e.g. $5+\bar{5}$ and/or $10+\bar{10}$ of SU(5) GUT). Complete multiplets do not spoil gauge coupling unification.
- Minimal scenario: $W=\lambda XM\bar{M}$. The messenger fermions acquire a supersymmetric mass $m=\lambda\langle X\rangle$ and messenger scalars are split: $m_{\pm}^2=m^2\pm\lambda\langle F_X\rangle$. SUSY breaking scale $\Lambda\equiv\langle F_X\rangle/\langle X\rangle$.
- Gaugino masses are generated at one-loop while sfermion masses are generated at two-loop. When $\Lambda << M$ ($\sim 100~{\rm TeV}~< M < M_{Pl}$)

$$m_{\tilde{\lambda_i}} \simeq \frac{\alpha_i}{4\pi} \Lambda, \quad \tilde{m}^2 \simeq 2\Lambda^2 \frac{\sum_i c_i \alpha_i^2}{16\pi^2}$$

- Gravitino mass $m_{\tilde{G}} \sim \frac{F}{M_{Pl}}$ is in general much lighter (than in supergravity). It can be ~ 100 eV. In general gravitino is the LSP. Distinct signatures.
- μ and B_{μ} problem! Essentially, $B_{\mu} \sim \mu \Lambda$.

Fusion of three issues

- Gauge coupling unification even with incomplete multiplets at string scale > GUT scale (Bachas, Fabre, Yanagida '96; Bastero-Gil, Brahmachari '97).
 - Adjoint octet (Σ_8) of color SU(3), adjoint triplet (Σ_3) of weak SU(2)
 - Origin of these states can be traced to the adjoint 24-plet of SU(5)
- Presence of intermediate states characterizing GMSB.

$$W_{\text{mess}} = (M_8 + \lambda_8 X) \text{Tr}(\Sigma_8^2) + (M_3 + \lambda_3 X) \text{Tr}(\Sigma_3^2)$$

F-term vev of hidden sector field X transmits SUSY breaking to visible sector via messenger multiplets.

• Dynamically ensure $\tilde{m}_{\rm color} >> \tilde{m}_{\rm uncolor}$ by delinking the sources of mass generation for colored and uncolored super-particles

Aim is to reproduce m_h , $(g-2)_\mu$, and other data

Unification with Σ_3 and Σ_8

$$\alpha_{1}^{-1}(M_{\text{str}}) = \alpha_{1}^{-1}(m_{\text{SUSY}}) - \frac{(33/5)}{2\pi} \ln \frac{M_{\text{str}}}{m_{\text{SUSY}}}$$

$$\alpha_{2}^{-1}(M_{\text{str}}) = \alpha_{2}^{-1}(m_{\text{SUSY}}) - \frac{1}{2\pi} \ln \frac{M_{\text{str}}}{m_{\text{SUSY}}} - \frac{2}{2\pi} \ln \frac{M_{\text{str}}}{M_{3}}$$

$$\alpha_{3}^{-1}(M_{\text{str}}) = \alpha_{3}^{-1}(m_{\text{SUSY}}) - \frac{(-3)}{2\pi} \ln \frac{M_{\text{str}}}{m_{\text{SUSY}}} - \frac{3}{2\pi} \ln \frac{M_{\text{str}}}{M_{8}}$$

- $m M_{
 m SUSY} \equiv (m_{Q_3} m_{ar U_3})^{1/2}$ is the average stop mass.
- $\alpha_{1,2,3}^{-1} \simeq (57,31,13)$ at $m_{\rm SUSY} = 3$ TeV.

Unification – key issues

For unification, $M_3 > M_8$ at one-loop.

For
$$M_{\rm str}=10^{17}(10^{18})$$
 GeV, $M_3/M_8=7(18)$.

$$M_{\rm str}^2 \ m_{
m mess} = M_{
m GUT}^3$$
 where $m_{
m mess} \equiv \sqrt{M_3 M_8}$.

Late Unification avoids proton decay constraints: $p \to K^+ \nu$ goes like $1/m_{H_c}^2$ where $m_{H_c} \sim M_{\rm str} \sim 10^{17-18}$ GeV.

Sparticle masses at mess scale

- lacksquare Define $\Lambda_8\equiv rac{\lambda_8 F_X}{M_8}$, $\Lambda_3\equiv rac{\lambda_3 F_X}{M_3}$
- Pecall $M_3>M_8$ (unification), tune λ_8 and λ_3 to ensure $\Lambda_8\gg\Lambda_3$
- Messenger scale spectrum

$$\begin{split} m_{\tilde{B}} &\simeq 0, \ m_{\tilde{W}} \simeq \frac{g_2^2}{16\pi^2}(2\Lambda_3), \ m_{\tilde{g}} \simeq \frac{g_3^2}{16\pi^2}(3\Lambda_8) \\ m_{\tilde{Q}}^2 &\simeq \frac{2}{(16\pi^2)^2} \left[\frac{4}{3} g_3^4(3\Lambda_8^2) + \frac{3}{4} g_2^4(2\Lambda_3^2) \right], \ m_{\tilde{D}}^2 = m_{\tilde{U}}^2 \simeq \frac{2}{(16\pi^2)^2} \frac{4}{3} g_3^4(3\Lambda_8^2), \\ m_{\tilde{L}}^2 &\simeq \frac{2}{(16\pi^2)^2} \frac{3}{4} g_2^4(2\Lambda_3^2), \ m_{\tilde{E}}^2 \simeq 0 \end{split}$$

No messenger is charged under U(1). Right-handed slepton and Bino masses are generated by Planck scale suppressed gravitational interaction and are of the order of the gravitino mass.

$$m_{\tilde{E}}(M_{\rm str}) \sim M_{\tilde{B}}(M_{\rm str}) \sim m_{3/2} \sim \frac{F_X}{M_P}$$

Sample spectra with $\Sigma_{3,8}$

Λ_3/Λ_8	0.10		
Λ_8	500 TeV		
$M_{1/2}$	920 GeV		
$M_{ m mess}$	$10^{13}~{ m GeV}$		
$\tan eta$	10		
μ	5.9 TeV		
$m_{ m stop}$	8.2 TeV		
δa_{μ}	1.24 \times 10 ⁻⁹		
$m_{ m gluino}$	10 TeV		
$m_{ m squark}$	9.4 TeV		
$m_{{\tilde e}_L}(m_{{ ilde \mu}_L})$	601 GeV		
$m_{ ilde{e}_R}(m_{ ilde{\mu}_R})$	258 GeV		
$m_{ ilde{ au}_1}$	98 GeV		
$m_{\chi_1^0}$	315 GeV		
$m_{\chi_1^\pm}$	851 GeV		

Phenomenology with $\Sigma_{3,8}$

- Due to large left-right stau mixing, one stau can be very light. Light stau can modify diphoton BR of Higgs by 10-20%.
- **Stau is the NLSP, with gravitino LSP**. However, stau is long-lived, as its decay to gravitino of the same order mass is suppressed. CMS limit: $m_{\tilde{\tau}} > 340$ GeV. This is too heavy for sizable diphoton contribution.
- This implies smuon is too heavy to explain muon (g-2) anomaly.

RPV: Allow mild ($\leq 10^{-7}$) RPV, so that stau can promptly decay to a lepton and neutrino. Then stau can be lighter than 340 GeV. Then muon g-2 can be explained at slightly better than 2σ level. Not any more!! LHC limits are sometimes stronger in RPV environment.

muon (g-2)

Introduction of $(5+\bar{5})$ messengers explains muon (g-2) better (right panel).

<u>Key point</u>: Bino/stau and gravitino mass generation de-linked. Gravitino can be ultra-light, while bino/stau can weigh around 100 GeV (since 5-plets have non-zero Y). Bino/stau mass $\propto \Lambda_5$.

Unification is not affected by complete multiplets.

Pegion below blue solid line is excluded by vac stability limit arising from large LR slepton mixing, which sets an upper limit on $\mu \tan \beta$.

Further improvements

- Including 3-loop corrections to m_h , stop mass in (3-5) TeV range even with minimal mixing can reproduce $m_h=125$ GeV (Feng et al '13).
- Since SUSY breaking scale comes down, μ gets smaller.

$$\mu^2 \sim (-m_{H_u}^2) \sim \frac{3}{4\pi^2} y_t^2(m_{\text{stop}}^2) \ln\left(\frac{M_{\text{mess}}}{m_{\text{stop}}}\right)$$

- **Description** LR mixing also goes down. So $\tilde{\tau_1}$ need not be that light.
- Bino/RH-slepton and gravitino masses de-correlated, thanks to 5-plets. Bino is NLSP. At messenger scale $m_{\tilde{B}}=\frac{\alpha_1}{4\pi}\Lambda_5, \ \ m_{\tilde{E}}^2=\frac{1}{8\pi^2}\left[\frac{3}{5}\alpha_1^2\Lambda_5^2\right]$.
- Gravitino can be made light

$$m_{3/2} \simeq 0.01 \,\mathrm{GeV} \left(\frac{\Lambda_8}{200 \mathrm{TeV}}\right) \left(\frac{(\Lambda_3/\Lambda_8)}{0.2}\right) \left(\frac{M_8}{10^{11} \mathrm{GeV}}\right) \left(\frac{(M_3/M_8)}{10}\right)$$

100 GeV Neutralino decays into 10 MeV gravitino in a BBN safe way (Kawasaki et al '08).

Muon (g-2) (updated)

 $(g-2)_{\mu}$ is dominated by bino-smuon loop. In the orange (yellow) region it is explained at 1 (2)- σ level. In the gray region, stau is lighter than 90 GeV.

$$(\Delta a_{\mu})_{\text{SUSY}} \simeq \frac{3}{5} \frac{g_1^2}{8\pi^2} \frac{m_{\mu}^2 \mu \tan \beta}{M_1^3} F_b \left(\frac{m_{\tilde{L}}^2}{M_1^2}, \frac{m_{\tilde{E}}^2}{M_1^2}\right)$$

✓ Viable regions are <u>above</u> the blue solid line where bino is NLSP. A stau NLSP is stable inside the detector (hence > 340 GeV (CMS '13)), which makes smuons too heavy!

Focus point

A region where EWSB seems natural even if superparticles are very heavy. One or more fixed ratios of soft SUSY breaking parameters are introduced which reduce the fine-tuning of the potential.

In GMSB, F.P. was achieved with different number of weakly (N_2) and strongly (N_3) interacting messenger multiplets. But gauge couplings do not unify (Brummer, Buchmuller'12; Brummer, Ibe, Yanagida'13).

The EWSB conditions are

$$\frac{g_1^2 + g_2^2}{4} v^2 = \left[-\mu^2 - \frac{(m_{H_u}^2 + \frac{1}{2v_u} \frac{\partial \Delta V}{\partial v_u}) \tan^2 \beta}{\tan^2 \beta - 1} + \frac{m_{H_d}^2 + \frac{1}{2v_d} \frac{\partial \Delta V}{\partial v_d}}{\tan^2 \beta - 1} \right]_{m_{\text{SUSY}}},$$

$$\frac{\tan^2 \beta + 1}{\tan \beta} = \left[\frac{1}{B\mu} \left(m_{H_u}^2 + \frac{1}{2v_u} \frac{\partial \Delta V}{\partial v_u} + m_{H_d}^2 + \frac{1}{2v_d} \frac{\partial \Delta V}{\partial v_d} + 2\mu^2 \right) \right]_{m_{\text{SUSY}}}.$$

where ΔV is the one-loop correction to the Higgs potential.

RG running and cancellations

- $m{P}$ $m_{H_u}^2$ (weak) receives negative contributions from colored super-partners.
- $m{ extstyle 9} \quad m_{H_u}^2 \mbox{(weak) receives positive contribution from wino loop and tree level } m_{H_u}^2 \mbox{.}$

$$\begin{split} m_{H_u}^2(3\text{TeV}) &= 0.704 m_{H_u}^2 + 0.019 m_{H_d}^2 \\ &- 0.336 m_Q^2 - 0.167 m_{\bar{U}}^2 - 0.056 m_{\bar{E}}^2 \\ &+ 0.055 m_L^2 - 0.054 m_{\bar{D}}^2 \\ &+ 0.011 M_{\tilde{B}}^2 + 0.192 M_{\tilde{W}}^2 - 0.727 M_{\tilde{g}}^2 \\ &- 0.003 M_{\tilde{B}} M_{\tilde{W}} - 0.062 M_{\tilde{W}} M_{\tilde{g}} - 0.010 M_{\tilde{B}} M_{\tilde{g}} \end{split}$$

$$m_{H_u}^2(\text{weak}) \sim 0.9 m_{\text{uncolor}}^2 - 1.3 m_{\text{color}}^2$$

In minimal GMSB with 5 and $\overline{5}$ messengers, the negative contributions substantially dominate over the positive contributions.

RG invariant parameter

With only Σ_3 and Σ_8 messengers, introduce $r_3 \equiv \frac{\Lambda_3}{\Lambda_8} = \frac{\lambda_3 M_8}{\lambda_8 M_2}$

$$r_3 \equiv \frac{\Lambda_3}{\Lambda_8} = \frac{\lambda_3 M_8}{\lambda_8 M_3}$$

This parameter is RG invariant

$$\lambda_{(3,8)}(t) = \lambda_{(3,8)}(t_0) \exp\left[\int_{t_0}^t dt'(\gamma_X + 2\gamma_{\Sigma_{(3,8)}})\right]$$

$$M_{(3,8)}(t) = M_{(3,8)}(t_0) \exp\left[\int_{t_0}^t dt'(2\gamma_{\Sigma_{(3,8)}})\right]$$

$$\frac{\lambda_3(t)M_8(t)}{\lambda_8(t)M_3(t)} = \frac{\lambda_3(t_0)M_8(t_0)}{\lambda_8(t_0)M_3(t_0)}$$

Focus point in AM-GMSB

$$m_{H_u}^2(3\text{TeV}) \simeq [0.16\,r_3^2 - 1.2]M_{\tilde{g}}^2$$

For $r_3 \simeq 2.8, -2.6$ we achieve Focus Point region

- In the gray region the EWSB does not occur. $M_{\rm mess}=10^{13}$ GeV.
- $\triangle = 60 150$ for $r_3 = 2.8$ to explain the observed m_h .
- ightharpoonup For minimal GMSB, $\Delta=750-1000$ to explain $m_h>125$ GeV for $M_{\rm mess}>10^9$ GeV.

Sample spectra for Focus Point

P1		P2		Р3	
Λ_8	180 TeV	Λ_8	280 TeV	$\overline{\Lambda_8}$	230 TeV
r_3	2.8	r_3	8/3	r_3	-2.55
$\tan \beta$	15	$\tan \beta$	15	$\tan \beta$	15
$\overline{}_h$	123.1 GeV	$\overline{}_h$	125.1 GeV	$\overline{}_h$	123.0 GeV
Δ	69	Δ	156	Δ	91
μ	538 GeV	μ	850 GeV	μ	652 GeV
$\overline{m_{ m gl}}$	3.6 TeV	$\overline{m_{ m gl}}$	5.4 TeV	$\overline{}}$	4.5 TeV
$m_{ m sq}$	3.4 - 4.5 TeV	$m_{ m sq}$	5.1 - 6.7 TeV	$m_{ m sq}$	4.2 - 5.5 TeV
$m_{ m st}$	2.2, 4.1 TeV	$m_{ m st}$	3.4, 6.2 TeV	$m_{ m st}$	3.1, 5.1 TeV
$m_{{ ilde e}_L}$	3.1 TeV	$m_{{ ilde e}_L}$	4.5 TeV	$m_{{ ilde e}_L}$	3.6 TeV
$m_{ ilde{e}_R}$	473 GeV	$m_{ ilde{e}_R}$	727 GeV	$m_{ ilde{e}_R}$	618 GeV
$m_{ ilde{ au}_1}$	221 GeV	$m_{ ilde{ au}_1}$	399 GeV	$m_{ ilde{ au}_1}$	394 GeV
$m_{\chi_1^0}$	128 GeV	$m_{\chi_1^0}$	124 GeV	$m_{\chi_1^0}$	131 GeV
$m_{\chi_1^\pm}$	550 GeV	$m_{\chi_1^\pm}$	870 GeV	$m_{\chi_1^\pm}$	670 GeV
$m_{\chi_2^\pm}$	2.6 TeV	$m_{\chi_2^\pm}$	3.8 TeV	$m_{\chi_2^\pm}$	3.1 TeV

F.T. 'then' and 'now'

- Years ago, $\Delta \sim 50$ for $M \sim 10^5$ TeV and it was worse than mSUGRA then (G.B., Romanino 1997).
- ullet In 20 years it has gone up by a factor of ~ 20 .

Conclusions

- Does naturalness demand that super-particles all have to be simultaneously heavy? OR, sleptons/weak gauginos can remain significantly lighter than squarks/gluino by internal dynamics?
- <u>Key observation</u>: With unconventional choice of messenger multiplets, a color SU(3) octet and a weak SU(2) triplet, GMSB works:
 - unification at string scale (between GUT and Planck scale).
 - ullet colored mass \gg uncolored mass of sparticles by intrinsic dynamics.
 - Introducing in addition the SU(5) 5-plets, it is possible to explain Muon (g-2) within 1σ . Scenario fine-tuned with $\mu \sim$ few TeV.
 - If we give up (g-2), then with just Σ_3 and Σ_8 , Focus Point can be achieved introducing a RG-invariant parameter.
 - Lighter stau is in (100-400) GeV range which can be a target at ILC.

GMSB with Adjoint Messenger multiplets (Σ_3 and Σ_8) is an attractive scenario