Belle and Belle II at TIFR

DHEP Annual Meeting @ TIFR April 7-8, 2016

ΔΕ Δt ~ 1

2

Group activities in one slide

and established leadership within the collaboration(s)

CP violation and rare B-meson decays \equiv SVD

Evidence for the decay $B^0\to K^+K^-\pi^0$

PRD 87, 091101(R) (2013)

- A challenging analysis challenged by huge continuum and peaking BB background
- Established a signal for the first time (3.5σ evidence)
 - Will be a key analysis for Belle II

Measurements of Branching Fractions and Direct *CP* Asymmetries for $B \to K\pi, B \to \pi\pi$ and $B \to KK$ Decays PRD 87, 031103(R) (2013)

We report measurements of the branching fractions and direct CP asymmetries (\mathcal{A}_{CP}) for $B \to K\pi, \pi\pi$ and KK decays (but not $\pi^0\pi^0$) based on the final data sample of $772 \times 10^6 \ B\overline{B}$ pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We set a 90% confidence-level upper limit for K^+K^- at 2.0×10^{-7} ; all other decays are observed with branching fractions ranging from 10^{-6} to 10^{-5} . In the $B^0/\overline{B}^0 \to K^{\pm}\pi^{\mp}$ mode, we confirm Belle's previously reported large \mathcal{A}_{CP} with a value of $-0.069 \pm 0.014 \pm 0.007$ and a significance of 4.4σ . For all other flavor-specific modes, we find \mathcal{A}_{CP} values consistent with zero, including $\mathcal{A}_{CP}(K^+\pi^0) = +0.043 \pm 0.024 \pm 0.007$ with 1.8σ significance. The difference of CP asymmetry between $B^{\pm} \to K^{\pm}\pi^0$ and $B^0/\overline{B}^0 \to K^{\pm}\pi^{\mp}$ is found to be $\Delta\mathcal{A}_{K\pi} \equiv \mathcal{A}_{CP}(K^+\pi^0) - \mathcal{A}_{CP}(K^+\pi^-) = +0.112 \pm 0.027 \pm 0.007$ with 4.0σ significance. We also calculate the ratios of partial widths for the $B \to K\pi$ decays. Using our results, we test the validity of the sum rule $\mathcal{A}_{CP}(K^+\pi^-) + \mathcal{A}_{CP}(K^0\pi^+) \frac{\Gamma(K^0\pi^+)}{\Gamma(K^+\pi^-)} - \mathcal{A}_{CP}(K^+\pi^0) - \mathcal{A}_{CP}(K^0\pi^0) \frac{2\Gamma(K^0\pi^0)}{\Gamma(K^+\pi^-)} = 0$ and obtain a sum of $-0.270 \pm 0.132 \pm 0.060$ with 1.9σ significance.

CP violation and rare charm decays \equiv SV

Search for CP violation in $D^0 \to \pi^0 \pi^0$ decays

$$A_{CP}(D^0 \to \pi^0 \pi^0) = (-0.03 \pm 0.64 \pm 0.10)\%$$

Results consistent with no CP violation An order of magnitude improvement over the existing result

PRL 112, 211601 (2014)

- A nice channel for NP, which can only be studied at e⁺e[−] flavor factories
- Set world's best limit (8.5×10⁻⁷) in absence of a signal

Search for Bottomonium States in Exclusive Radiative $\Upsilon(2S)$ Decays

PRL 111, 112001 (2013)

Unambiguously refuted the claim of dubious Xbb(9975) state, which was claimed by a study based on CLEO's data
Paved way for further study on χ_{bJ}(1P) states – see below

□ 85 new decay channels of $\chi_{bJ}(1P)$ are discovered

□ First upper limit on the natural width of of $\chi_{b0}(1P)$

- Determine the vertex position of the weakly decaying particles
- Measure the two-dimensional track position and momentum for charged particles
- PiXel Detector (PXD)
 - Silicon Vertex Detector (SVD)
 - Double-sided silicon strip detectors (DSSDs)

VXD requirements

- Fast to operate in high rate environment
- Excellent spatial resolution
- Radiation hard (up to 100 kGray)
- Good tracking capability to track particles down to 50 MeV in p_T

SVD Structure Overview

Forward

- 4 SVD layers (L3 to L6) composed of ladders arranged in a windmill structure
- Improved resolution at IP w.r.t Belle I
- Very lightweight only 0.58%X₀ per layer

Layer

Ladders

SVD Ladder Layout

<i>R</i> _{L3} = 38mm	<i>R</i> _{L5} = 115mm
R _{L4} = 80mm	<i>R</i> _{L6} = 140mm

APVs

L6 Sensor	
L5 Sensor Solution	
Senso Siso	
L4 Sensor Sensor Sensor	
L3 Sens	

Sensors

/ Ladder

Rectangular sensor

Trapezoidal sensor

SVD Sensors and Readout ASIC

	Rectangular	Trapezoidal
# of <i>p</i> -strips	768	768
<i>p</i> -strip pitch	75µm	5075µm
# of <i>n</i> -strips	512	512
<i>n</i> -strip pitch	240µm	240µm
Active area	57.72x122.9 mm ²	5890mm²

Readout ASIC (APV25)

 As high hit rate is anticipated at Belle II, the readout chip should have a short signal shaping time for low noise and a good radiation hardness.

We adopted the APV25

- The APV25 was originally developed for the CMS.
 - Shaping time = 50ns.
 - Radiation hardness > 1MGray.
- Other characteristics
 - # of input channels = 128 / chip.
 - 192-deep analog pipeline for the dead-time reduction.
 - Thinned down to 100µm for the material budget reduction.

Concepts • P-side readout

- APV25 on sensor
 - The APVs for the inner sensors are placed directly on the DSSDs to minimize the analog path length (capacitive noise)
- - Signals on the sensor backside are brought to the upper side by other flex circuits and readout by APV25 chips mounted on the top

Readout ASICs on the same side & line \rightarrow easier chilling by a single cooling pipe.

Snapshot – the "Origami" Concept

The backside signals are transmitted to the APV25 via <u>bent</u> (and glued) flex circuits.

SVD Ladder Assembly

Precision DSSD alignment

DSSDs are handled with precision assembly jigs (O(50µm)), on which the sensors are fixed by vacuum chucking.

Sensor fixed on a jig

Sensors are aligned with a Precision of $10\mu m$ by a position tuning jig with monitoring through a CMM.

SVD Ladder Assembly

Ladder fabrication: gluing

Ladders are fabricated by gluing the components by Araldite[®]2011

Glue spread below bonding pads can affect the bonding yield and pull strength \rightarrow glue amount and glue lining are controlled by a gluing robot.

60.0

Position on the gluing line [mm]

40.0

80.0

100.0

120.0

0.0

20.0

Electrical connection: wire bonding

The flex \leftrightarrow DSSD strips and flex \leftrightarrow APV25s are electrically connected by the wire bonding with A ℓ (99%) wire(ϕ =25 μ m). Number of total bonds = 450k.

Bonding machine parameters are fine tuned to realize yield>99% and pull strength $f:\mu_f>5g$, $\sigma_f/f<20\%$.

Assembled ladders

L3

L4

CO₂ Cooling

The total SVD (Origami) power dissipation 688(328) W Edge hybrids: APV25 chips cooled by end rings A pre-bent cooling pipe (OD=1.6mm) will be clipped onto the ladders on top of the Origami APVs

FADC Readout System "COPPER" board x48 FADC **Data stream** RX **SVD** CPU to HLT x1748 **TRG/CLK** signals PXD region of APV25s VME to PXD interest gen | x4 buffer Data size reduction buffers FPG/ YCLON I Decod Trigger/ Central timing Gbl STRATIX IV TRG distributor **FADC-Ctrl Central DAQ** SVD readout system

Prototypes of all components have been developed.

Past Reviews

- Class C1 Onsite review on 5th February 2015
- Class C2 Onsite review on 27th June 2015
- Class B- (L4.905) Electrically working but mechanically not
- Class C3 (L4.906) Mechanically good but one corner of the FW sensor lifted up to 400microns
- L4.905 and L4.906 (remote) 6th January 2016
- L4.001 (Class B) 25th February 2016

Taking a lead role in the Belle and Belle II experiments in probing NP in the luminosity frontier

□ Both physics and detector (Belle II SVD)