# DHEP Annual Meeting Search for CP violation in the radiative mode $D^0 \to \phi \gamma$

#### Varghese Babu, G. B. Mohanty, T. Aziz.

Tata Institute of Fundamental Research

April 7, 2016

イロン イロン イヨン イヨン 三日

1/18

• CP violation in the charm sector had been investigated for a number of modes in the Belle Experiment. A few recent results are

$$\begin{array}{l} {\cal A}_{CP}(D^0 \to \pi^0 \pi^0) = (-0.03 \pm 0.64 \pm 0.10)\% \\ {\cal A}_{CP}(D^0 \to K_s^0 \pi^0) = (-0.21 \pm 0.16 \pm 0.07)\% \\ (\text{N.K.Nisar et al. arXiv:1404.1266[hep-ex] 2014}) \end{array}$$

$$A_{CP}(D^+ \to K_s^0 K^+) = (-0.25 \pm 0.28 \pm 0.14)\%$$
  
(B.R.Ko et al. arXiv:1212.6112 [hep-ex] 2013)

$$\begin{aligned} &A_{CP}(D^+ \to K_s^0 \pi^+) = (-0.363 \pm 0.094 \pm 0.067)\% \\ & (\text{B.R.Ko et al. arXiv:1001.3202[hep-ex] 2012}) \end{aligned}$$

$$A_{CP}(D^+ \rightarrow \phi \pi^+) = (+0.51 \pm 0.28 \pm 0.05)\%$$
  
(M.Staric et al. arXiv:1110.0694 [hep-ex] 2011)

- The paper by Gino Isidori and Jernej F. Kamenik (2012)(PhysRevLett.109.171801) using models beyond SM, predicts sizeable CP Asymmetry in modes of the kind D<sup>0</sup> → Vγ where V is a vector particle, upto several percent.
- Thus this can be an important search for physics beyond the standard model. We intend to search for CP violation in the mode  $D^0 \rightarrow \phi \gamma$

#### Why study $D^0 \rightarrow \phi \pi^0$ ?

- The modes  $D^0 \rightarrow \phi \pi^0$  and  $D^0 \rightarrow \phi \eta$  are important backgrounds for our signal mode  $D^0 \rightarrow \phi \gamma$  as both the  $\pi^0$ and  $\eta$  decay into two photons and if one of the photons is not reconstructed, it would resemble our signal.
- The branching fractions of the modes are (PDG, PR D86, 010001 (2012))

$$\begin{split} \mathcal{B}(D^0 \to \phi \pi^0, \, \phi \to K^+ K^-) &= (6.4 \pm \, 0.4) \times 10^{-4} \\ \mathcal{B}(D^0 \to \phi \eta) &= (1.4 \pm \, 0.5) \times 10^{-4} \\ \mathcal{B}(D^0 \to \phi \gamma) &= (2.7 \pm \, 0.35) \times 10^{-5} \end{split}$$

• We study the mode  $D^0 \rightarrow \phi \pi^0$  because of its relatively higher branching fraction (more than 20 times the signal  $D^0 \rightarrow \phi \gamma$ ) and because it will familiarize us with the fitting and extraction procedure for  $A_{CP}$ 



Figure : Signal Process Diagrams for  $D^0 \to \phi \pi^0$  and  $\overline{D^0} \to \phi \pi^0$ 

Cuts Applied ( $D \rightarrow \phi \pi^0$ )

- $|dr|_{K^{\pm},\pi_s} < 1.0~\mathrm{cm}$
- $|dz|_{K^{\pm},\pi_s} < 3.0 \ \mathrm{cm}$
- $\mathcal{R}_{\mathcal{K}^{\pm}}$  (Kaon Likelyhood) > 0.1
- $\mathcal{R}_{\pi_s}$  (Kaon Likelyhood) < 0.9
- 1.01 GeV  $< M_{\phi} <$  1.03 GeV
- $E_{\gamma} > 50 MeV$  (Barrel)
- $E_{\gamma} > 100 MeV$  (Endcap)
- 119 MeV  $< M_{\pi^0} <$  151 MeV
- $P_{D^*}^* > 2.5 GeV$  (optimized)
- $P_{\pi^0} > 380 MeV$  (optimized)
- 1.83 GeV  $< M_{D^0} < 1.89$  GeV (optimized)
- 140 MeV  $< \Delta M <$  160 MeV



Figure : 2-D cut optimization

Figure :  $\Delta M$  distribution.

- Since the  $P_{D^*}^* P_{\pi^0}$  variables are correlated, a 2-D optimization , varying each cut independently, is performed.
- The optimizations are performed by minimizing the figure of merit,





Figure :  $\cos\theta_{\text{hel}}$  distribution. 5/18

#### How we measure CP asymmetry, $A_{CP}$

•  $A_{rec}$  is defined in terms of signal yield  $(N_{rec})$ 

$$A_{rec} = \frac{N_{rec}^{D^{*+} \to D^0 \pi_s^+} - N_{rec}^{D^{*-} \to \overline{D^0} \pi_s^-}}{N_{rec}^{D^{*+} \to D^0 \pi_s^+} + N_{rec}^{D^{*-} \to \overline{D^0} \pi_s^-}}$$

 $A_{rec}$  is the sum of three terms.  $A_{rec} = A_{cp} + A_{FB} + A_{\epsilon}^{\pi_s}$ 

- It has been demonstrated from previous CP asymmetry studies that the pion detection efficiency asymmetry  $A_{\epsilon}^{\pi_s} = +0.11\%$
- Since A<sub>FB</sub> is an odd function of cos(θ<sup>\*</sup><sub>D\*</sub>), we divide the data in bins of cos(θ<sup>\*</sup><sub>D\*</sub>) and extract A<sub>cp</sub> and A<sub>FB</sub> from it by adding and subtracting bins at ±cos(θ<sup>\*</sup><sub>D\*</sub>)

$$A_{CP} = \frac{A_{rec}^{cor}(\cos(\theta_{D*}^*) + A_{rec}^{cor}(-\cos(\theta_{D*}^*))}{2} \text{ and }$$
$$A_{FB} = \frac{A_{rec}^{cor}(\cos(\theta_{D*}^*) - A_{rec}^{cor}(-\cos(\theta_{D*}^*)))}{2}$$

## Full $\Upsilon(4S)$ MC $\Delta M$ Fit: Shift in $\cos \theta_{\text{hel}}$ distribution



Figure : Simultaneous fit of the Full  $\Upsilon(4S)$  generic MC (711  $fb^{-1}$ )

For the Helicity component, the signal shape is modeled by an  $(x - a)^2$  function. The fitted value obtained for the helicity shift parameter is  $a_{\text{shift}} = 0.0019 \pm 0.0026$ 

### Full $\Upsilon(4S)$ Data 2D Fit: Shift in $\cos \theta_{\text{hel}}$ distribution



Figure : Simultaneous 2-D fit of the Full  $\Upsilon(4S)$  Data (711  $fb^{-1}$ )

э

8/18

The fitted value obtained for the helicity shift parameter is  $a_{\rm shift} = -0.05199 \pm 0.0026 \ (\sim 20\sigma effect)$ 

| Sample | $A_{CP}^{uncorr}$ (1-D Fit) % | A <sup>uncorr</sup> (2-D Fit) % |
|--------|-------------------------------|---------------------------------|
| MC 0   | $-0.09 \pm 0.84$              | $+0.16\pm0.83$                  |
| MC 1   | $-0.82 \pm 0.85$              | $-0.96\pm0.84$                  |
| MC 2   | $+0.83 \pm 0.84$              | $+1.04\pm0.83$                  |
| MC 3   | $+1.63\pm$ 0.84               | $+1.50\pm0.83$                  |
| MC 4   | $-0.29\pm$ 0.83               | $-0.25\pm0.82$                  |
| MC 5   | $-0.28 \pm 0.84$              | $-0.22\pm0.83$                  |
| Data   | $-0.047 \pm 0.86$             | $-0.60\pm0.81$                  |
|        |                               |                                 |

Since we do not correct for the slow Pion detection efficiency asymmetry, we measure  $A_{CP}^{uncorrected} = A_{CP} + A_{\epsilon}^{\pi_s}$ 



#### $D^0 \rightarrow \phi \gamma$ Study : Efficiency of the Extended $\pi^0$ Veto





- The candidate photon in in our main channel  $D \rightarrow \phi \gamma$  is clubbed up with all other photons in the event and a probability is assigned for each combination on whether they come from a decayed  $\pi^0$ .
- We have tried to improve the Vetoing efficiency by including in our list of photons in the given event, photons that have converted into an e<sup>+</sup>e<sup>-</sup>

# Summary of cuts

| Variable                | $Cut-\Upsilon(4S)$     | Eff. (%)<br>Loss | $Cut-\Upsilon(5S)$     | Eff.(%)<br>Loss |
|-------------------------|------------------------|------------------|------------------------|-----------------|
| $ dr _{K^+,K^-,\pi_s}$  | < 1.0  cm              |                  | < 1.0  cm              |                 |
| $ dz _{K^+,K^-,\pi_s}$  | < 3.0 cm               |                  | < 3.0  cm              |                 |
| $\mathcal{R}_{K^+,K^-}$ | > 0.1                  | 0.91             | > 0.1                  | 0.83            |
| $\mathcal{R}_{\pi_s}$   | < 0.9                  | 0.14             | < 0.9                  | 0.08            |
| $M_{\phi}$              | 1.01 - 1.03 (GeV)      | 10.71            | 1.01 - 1.03 (GeV)      | 11.01           |
|                         | ( $\sim\pm2.9\sigma$ ) |                  | ( $\sim\pm2.9\sigma$ ) |                 |
| $M_{D^0}$               | 1.68 - 2.05 (GeV)      | 0.52             | 1.68 - 2.05 (GeV)      | 0.53            |
| $\Delta M$              | 140 - 160 (MeV)        | 0.18             | 140 - 160 (MeV)        | 0.19            |
| $\pi^0$ probability     | < 0.049                | 54.29            | < 0.055                | 53.90           |
| $\eta$ probability      | < 0.359                | 7.01             | < 0.390                | 5.69            |
| E9/E25                  | > 0.938                | 7.72             | > 0.941                | 7.96            |
| $E_{\gamma}$            | > 580  MeV             |                  | > 610 MeV              |                 |
|                         |                        | 33.56 (2-D)      |                        | 53.90 (2-D)     |
| $P_{D^*}^*$             | > 2.55  GeV            |                  | '> 3.10 GeV≣ · · · ≡   |                 |

# $D^0 o \phi \gamma$ : Backgrounds, 2-D optimization





Helicity Distribution



2-D Optimization for Y(4S)



#### Comparison of different fitting schemes



#### Table : Comparison of fitting results

| Fit type                               | A <sub>raw</sub> measured % |
|----------------------------------------|-----------------------------|
| $\Delta M$ -cos $\theta_{hel}$ 2-D Fit | $-4.5\pm8.5$                |
| $M_D$ -cos $\theta_{hel}$ 2-D Fit      | $-2.7\pm7.5$                |
| 3-D Fit                                | $0.2\pm6.9$                 |
|                                        |                             |

- For the  $\Delta M$ -cos  $\theta_{hel}$  fit, we use an optimized  $M_D$  signal window (1.84 1.89 GeV), and for the  $M_D$ -cos  $\theta_{hel}$  fit, we use an optimized  $\Delta M$  signal window (142 148 MeV)
- The 3-D fit has the smallest uncertainty in A<sub>CP</sub>

# Projections of the 3-D fit to the variables $\Delta M$ , $M_D$ and $\cos \theta_{hel}$





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Results : $A_{CP}^{uncorr}$ for $\Upsilon(4s) + \Upsilon(5s)$ combined sample

| MC Stream | A <sup>uncorr</sup> (3-D Fit)(%) |
|-----------|----------------------------------|
| 0         | $+0.2\pm6.9$                     |
| 1         | $-4.3\pm6.4$                     |
| 2         | $-5.2\pm6.2$                     |
| 3         | $+2.3\pm6.9$                     |
| 4         | $-1.2\pm7.0$                     |
| 5         | $-3.6\pm6.3$                     |



## The method of reweighting: $A_{Raw}$ for $D \to K_S \pi^0$



- Since we do not expect large statistics for the main mode  $D \rightarrow \phi \gamma$ , the method of binning in the  $D^*$  production direction to correct for  $A_{FB}$  is not viable.
- Instead, we use a high statistics mode like  $D \rightarrow K_S \pi^0$  to estimate  $A_{FB}$  bin by bin, and we use these values to appropriately assign weights to our signal mode, during the simultaneous fitting, in order to correct for  $A_{FB}$ .

| Table : | Comparison | of total | $A_{CP}$ | measurements for | or the | mode <i>L</i> | $D \to K_S \pi^0$ |
|---------|------------|----------|----------|------------------|--------|---------------|-------------------|
|---------|------------|----------|----------|------------------|--------|---------------|-------------------|

| Number of bins | Total A <sub>CP</sub> (%) by the binning method | Total A <sub>CP</sub> (%) by the reweighting method |
|----------------|-------------------------------------------------|-----------------------------------------------------|
| 2              | $0.07\pm0.15$                                   | $0.07\pm0.15$                                       |
| 4              | $0.00\pm0.15$                                   | $0.00\pm0.15$                                       |
| 10             | $0.01\pm0.15$                                   | $0.02\pm0.15$                                       |
| 20             | $0.01\pm0.15$                                   | $0.01\pm0.15$                                       |
| 30             | $0.00\pm0.15$                                   | $0.00\pm0.15$                                       |
|                |                                                 |                                                     |

Table : Comparison of total  $A_{CP}$  measurements for the mode  $D o \phi \pi^0$ 

| Fit method | Total A <sup>uncorr</sup> (%) by the<br>binning method | Total $A_{CP}^{uncorr}$ (%) by the reweighting method |
|------------|--------------------------------------------------------|-------------------------------------------------------|
| 1-D Fit    | $-0.47 \pm 0.86$                                       | $\textbf{-0.56}\pm0.85$                               |
| 2-D Fit    | $\textbf{-0.60}\pm\textbf{0.81}$                       | $\textbf{-0.66} \pm \textbf{0.84}$                    |
|            |                                                        |                                                       |

イロン 不留 とくほど 不良とう 語

- Extensive Monte Carlo studies have been performed on the sources of backgrounds and the A<sub>CP</sub> estimation procedure. We have also estimated the sensitivity of our final A<sub>CP</sub> measurement using various streams of generic MC.
- The studies performed are under collaboration wide review, and once the scrutiny is completed, we expect to look at *A<sub>CP</sub>* in real data.

#### THANK YOU!