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Listening to the Schrödinger’s Cat

What is this perspective?



Outline

Introduction: the Human perspective

The Cat’s perspective

The Particle Physicist’s perspective

Outlook: both here and there



Classical computation: analog machines

The Antikythera machine The Slide Rule



An analog computer: bouncing ball

The motion of a bouncing ball can be simulated by an electrical circuit
that models the kinematics. Variables are gravity, damping due to air

friction and elasticity of the ball.



Digital computers: old and new

Driven by a revolution in transistors and integrated circuits development



Monte-Carlo methods: when random numbers have a meaning

I w(x , y) = 1 if x2 + y2 ≤ 1
= 0 otherwise

I Area Q =
∫

w(x , y) dx dy = π

I Pick N random numbers in the set
x ∈ [−1,1] and y ∈ [−1,1]

I Calculate the sum
QN = 4 1

N

∑N
i=1 w(xi , yi )

I The larger the N, the more
accurate the result is!

I Estimate of error

∆Q
Q

=

√
〈w2〉 − 〈w〉2
〈w〉
√

N

I P (polynomial time) problem!



What can random numbers do for you?
Properly harnessed (= good algorithms +

digital computers), they can:
I Reproduce the meson and baryon

spectrum (pions, kaons, protons, · · · )
I A truly remarkable feat, given that the

building blocks of matter, quarks and
gluons are confined within the hadrons by
the strong force. This theory, unlike the
theory describing photons and electrons,
(Quantum Electrodynamics ) is strongly
interacting.

I Because quarks and gluons carry color
charges, this theory is often called
Quantum Chromodynamics or QCD in
short.

I MC predict that if quarks and gluons are
heated to 2 trillion = 2 ×1012 degrees, the
hadrons would melt setting them free!

I Currently being verified at experiments at

CERN and BNL.



A (classical) nightmare
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I Another way to calculate π∫∞
−∞ exp(−x2)dx =

√
π

I Weighting factor f (x) essential to make
calculation efficient

Q =

∫
w(x)dx =

1
N

N∑
i=1

wi

wi drawn from a Gaussian distribution.
I For an oscillatory integral, MC is difficult:∫∞

−∞ exp(−x2) cos(kx)dx =
√
π exp(− k2

4 )

I This means that ∆Q
Q ∼ exp(c k2)

I One needs N ∼ exp(d k2) to have the
same signal-to-noise ratio!

I Suddenly, the problem becomes

exponentially, i.e., NP (non-polynomial)

hard! Technically called sign problem.



How does it hurt physics?
A zoo of interesting problems in strongly correlated systems, all reliant on

non-perturbative methods (Monte-Carlo simulations).

ALL suffer from severe sign problems!



... and make us frustrated ...

New interdisciplinary tools needed for a breakthrough.



What’s the way out?
Richard Feynman’s vision from 1982

I’m not happy with all the analyses that go with just the classical
theory, because nature isn’t classical, dammit, and if you want
to make a simulation of nature, you’d better make it quantum
mechanical, and by golly it’s a wonderful problem, because it
doesn’t look so easy.



The Qubit

I While a classical bit can only take two values, the quantum bit can be
in a superposition state: |ψ1〉 = α1|0〉+ α2|1〉 where
α1, α2 ∈ C, |α1|2 + |α2|2 = 1

I A two-qubit system can be represented as:
|ψ2〉 = α1|00〉+ α2|01〉+ α3|10〉+ α4|11〉, with |α1|2 + · · ·+ |α4|2 = 1

I Storing a n qubit already requires 2n complex coefficients on a
classical computer, but only n quantum mechanical degrees of
freedom (spins, atoms, ions, molecules, · · · .)

I For n = 500, this number is more than the number of atoms in the
Universe!



The basic principle of Quantum Computers



Ion-traps as digital quantum computers

I Well controlled strings of trapped atomic ions held in linear
radiofrequency traps.

I Qubits are encoded in one ion each.

I Manipulated and made to interact with other qubit by laser pulses or
microwave radiation.

I Coherence can be preserved for a few milliseconds upto seconds.

I Quantum error correction techniques required.

single qubit gate 2-qubit gate 

array of qubits

time
0

...

t∆t1

multi-qubit gate 

desired time evolution
on a coarse-grained 

time scale

e−iHeff t

physical operations on quantum hardware 
(e.g. laser pulses)



Big quantum computers

I The toric code ( lattice gauge theory with a Z(2) gauge group )
digitally simulated in an ion-trap. A prescribed sequence of quantum
gate operations implements the interaction.
Kitaev (2003); Lanyon et. al. (2011)

I Triangular lattice with spin- 1
2 in a Penning trap: upto 300 spins.

Britton et. al. (2012)



Analog Quantum Simulators
I A well-controlled quantum system: Hsim ←→ Hsys.
I Ultra-cold atoms in optical lattices turn out to be ideal candidates.
I Make an optical (super)-lattice by shining lasers on each other.
I Different lattices, different geometries, different dimensions.
I Tunable parameters include electric fields, magnetic fields,

microwaves, lasers, atomic species.
I ultracold temperatures in nanokelvin range maintain long coherence.
I Simpler interactions but more scalability.

a

b



Validating a Quantum Computer

The Bose-Hubbard model −→ analog quantum simulator validated.

H = −J
∑

<i,j>

(a†
i aj + h.c.) +

U
2

∑

i

ni (ni − 1)

comparison of Monte-Carlo and experiment with ∼ 3× 105 particles
Prokofiev, Svistunov, Troyer et. al.(MC); Bloch et. al. (Expt); Nature 2010



Superiority of quantum computers
Quantum computers would be absolutely essential in studying
real-time evolution in quantum systems and non-equilibrium physics.
Example of a quantum quench in a strongly correlated Bose gas.
S. Trotzky et. al., Nature Physics (2012).

H =
∑

j

[
−J(a†j aj+1 + h.c.) +

U
2

nj (nj − 1) +
K
2

nj j2
]

Start the system in the state |ψ(t = 0)〉 = | · · · , 1, 0, 1, 0, 1, · · · 〉 and then study the

evolution by the Hamiltonian

U/J = 5.16(7)

K/J = 1.7 × 10¬2

4Jt/h
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What to see in real time?
Confinement in QCD is phenomenologically described by a “string”
String breaking from a study of the spectrum:
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I string breaking in real time, as a quench, as the analog for the above
example in condensed matter physics.

I Simpler models with similar physics needed.



Schwinger Model: QED in (1 + 1)−d

I The lattice Hamiltonian:

H =
g2

2

∑
x

e2
x,x+1 − tF

∑
x

[
ψ†x ux,x+1ψx+1 + h.c.

]
+ m

∑
x

(−1)xψ†xψx

I Fermions anti-commute. Link fields unitary : u†u = 1; satisfy:

[ex,x+1, ux,x+1] = ux,x+1; [ex,x+1, u†x,x+1] = −u†x,x+1; [ux,x+1, u†x,x+1] = 0

I Gauss’ law generates gauge transformations, =⇒ [Gx ,H] = 0, and selects
the physical states: Gx |Ψ〉 = (ex,x+1 − ex−1,x )|Ψ〉 = ρx |Ψ〉

I Compact QED: ux,x+1 = exp(iAx,x+1), Ax,x+1 ∈ [0, 2π).
ex,x+1 has only integer quantum numbers:0,±1,±2, · · · ,±∞.

I Infinite dimensional Hilbert space for the gauge field non-trivial to implement
in quantum simulators with finite degrees of freedom.

I Alternate formulations of gauge theories with finite dimensional Hilbert space
needed! Use Quantum Link Models (QLMs).



Abelian Quantum Link model
I QLMs have discrete Hilbert spaces at each link, but generate continuous

gauge transformations Horn (1981); Orland(1990); Chandrasekharan, Wiese (1996)

I At each link, use a quantum spin ~S = (S1,S2,S3) with spin-S. The Hilbert
space is then automatically (2S + 1)-dimensional.

H =
g2

2

∑
x

E2
x,x+1 − tF

∑
x

(
ψ†x Ux,x+1ψx+1 + h.c.

)
+
∑

x

(−1)xψ†xψx

I Gauge fields:
Ux,x+1 = S+

x,x+1 = S1
x,x+1 + iS2

x,x+1, U†x,x+1 = S−x,x+1 = S1
x,x+1 − iS2

x,x+1

I Electric field: Ex,x+1 = S3
x,x+1 with eigenvalues −S, . . . ,S.

I Constructed this way, gauge fields satisfy:
[Ex,x+1,Ux,x+1] = Ux,x+1; [Ex,x+1,U†x,x+1] = −U†x,x+1

I Gx |Ψ〉 = (Ex,x+1 − Ex−1,x ) |Ψ〉 = ψ†xψx |Ψ〉;
As usual Gx generates Gauge transformations and [H,Gx ] = 0.

I However, [U,U†] = 2E . Possibility of new physics as well.

DB, Bögli, Dalmonte, Rico Ortega, Stebler, Wiese, Zoller (2012)



The String and its breaking
Consider the model with spin S=1, in the electric flux basis.
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Energetics in tF → 0 limit easy
to analyze:
E0 = −m L

2

Estring − E0 = g2

2 (L− 1)

Emesons − E0 = 2( g2

2 + m)

Estring−Emesons = g2

2 (L−3)−2m
Estring − Emesons = 0
=⇒ L = 4m

g2 + 3

Note that the Gauss’ Law here is actually:

Gx + 1
2 [(−1)x − 1] because of the

staggered occupation of the vacuum.

DB, Bögli, Dalmonte, Rico Ortega, Stebler, Wiese, Zoller (2012)



Static Properties
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Dynamic properties
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Results obtained by exact diagonalization.
These results serve as benchmark for the quantum simulators.



Implementation in optical lattices

How to implement all these constraints in optical lattices?

? Different states of atoms in optical lattices represent different states:

2x 2x + 1

E2x,2x+1 = (n1
2x+1 − n2

2x)/2

S+
2x+1,2x

S+
2x+1,2x

n2x + n2x+1 = 2S = 2
No. of particles fixed within a link for a
given spin.
U2x,2x+1 = S+ = b2x b†2x+1;

E2x,2x+1 = Sz = 1
2 (b†2x+1b2x+1 − b†2x b2x )

? Gauss Law: G̃x = (∇·E)x − ρx = nF
x + n1

x + n2
x − 2S + 1

2 [(−1)x − 1]

? In optical lattices, realized using a microscopic Hubbard-type Hamiltonian

H̃ =
∑

x
hx,x+1

B +
∑

x
hx,x+1

F + m
∑

x
(−1)x nF

x + V
∑

x
G̃2

x

= −tB
∑

x∈odd

b1†
x b1

x+1 − tB
∑

x∈even
b2†

x b2
x+1 − tF

∑
x
ψ†xψx+1 + h.c.

+
∑

x,α,β

nαx Vαβnβx +
∑
x,α

(−1)x Vαnαx

DB, Dalmonte, Müller,Rico Ortega, Stebler, Wiese, Zoller (2012)



Optical lattice setup
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Because of energy
constraint, only
correlated hops are
allowed.
This gives rise to
terms like:
ψ†2b(2)

2 b(2)†
3 ψ3 ∼ ψ†2U2,3ψ3

and
ψ3b(1)†

3 b(1)
4 ψ†4 ∼ ψ3U†3,4ψ4,

the fermion-gauge field
coupling.

DB, Dalmonte, Müller,Rico Ortega, Stebler, Wiese, Zoller (2012)



What does the simulator really look like?

Basic elements for the implementation proposal already exist in some
labs. They need to combine the different experimental techniques.



Other novel physics: Crystalline Confinement
A pure-gauge U(1) quantum link model in (2 + 1)− dimensions with
quantum spin 1

2 shows novel confined phases. The flux is quantized
in half-integer units! DB, Jiang, Widmer, Wiese (2013)
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Chiral Dynamics: Expansion of a ”fireball”
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DB, Bögli, Dalmonte, Rico, Stebler, Wiese, Zoller (2014)



Where do we stand?

Basic ingredients presented in our proposals exist in several quantum optics labs,
methods need to be combined for the full implmentation.

Note that other groups from Barcelona, Tel-Aviv and Munich have also proposed

meaningful quantum simulator construction in particle physics contexts. A widely

developing field!
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Where do we stand?

Quantum simulators arise as a supplement to high-precision classical
simulators. When they start becoming available we should not be

afraid to upgrade!



Collaborators from Uni Bern (AEC):

Michael Bögli Pascal Stebler Philippe Widmer Uwe-Jens Wiese

Collaborators from Uni Innsbruck (IQOQI):

Marcello Dalmonte Enrique Rico Peter Zoller

Thank you for your attention!
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