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* Using experimental measurements of ∆Ms,d and theoretical

determinations of the relevant hadronic matrix elements

→ extract the CKM matrix elements |Vts|, |Vtd|.
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Neutral B mixing

In the Standard Model, the neutral B − B̄ mixing occurs at leading order in the EW

interactions via the box diagrams

In extensions of the SM, other particles can appear

* In the boxes

* At tree level (flavour changing neutral currents)

Through a combination of

GIM mechanism and

Cabibbo suppression, the

top dominates quark loop

contributions
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Neutral B mixing

And the mixing is described to a good approximation by the effective hamiltonian

H∆B=2
eff =

5∑
i=1

CiOi +
3∑
i=1

C̃iÕi with

SMOq1 =
(
b̄iγν(1− γ5)qi

) (
b̄jγν(1− γ5)qj

)
Oq2 =

(
b̄i(1− γ5)qi

) (
b̄j(1− γ5)qj

)
Oq3 =

(
b̄i(1− γ5)qj

) (
b̄j(1− γ5)qi

)
Oq4 =

(
b̄i(1− γ5)qi

) (
b̄j(1 + γ5)qj

)
Oq5 =

(
b̄i(1− γ5)qj

) (
b̄j(1 + γ5)qi

)
Õq1,2,3 = Oq1,2,3 with the replacement (1± γ5)→(1∓ γ5)

(for BSM theories with new heavy particles scale ≥ TeV, the local effective four-quark

operator remains a convenient description)
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(
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) (
b̄j(1 + γ5)qi

)
Õq1,2,3 = Oq1,2,3 with the replacement (1± γ5)→(1∓ γ5)

(for BSM theories with new heavy particles scale ≥ TeV, the local effective four-quark

operator remains a convenient description)

QCD conserves parity 〈B̄|Õi|B〉 = 〈B̄|Oi|B〉 → need 5 matrix elements

In this talk:

Calculation of the five hadronic matrix elements (and combinations of them) using

three-flavour lattice QCD FNAL-MILC 1602.03560 (SM prediction of ∆Md,s and ξ)



1.1 Simulation details

MILC Nf = 2 + 1 asqtad ensembles

* 600-2000 gauge fields per ensemble

* pions as light as 177 MeV



1.2 Matching and renormalization

* Mostly non-perturbative renormalization (mNPR).

Oi = ZV 4
bb
ZV 4

dd
ρijOj + O(αsa, a

2)

where the nonperturbative factors ZV 4
bb,dd

remove wave-function factors,

tadpoles and some vertex corrections.
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* Mostly non-perturbative renormalization (mNPR).

Oi = ZV 4
bb
ZV 4

dd
ρijOj + O(αsa, a

2)

where the nonperturbative factors ZV 4
bb,dd

remove wave-function factors,

tadpoles and some vertex corrections.

* Remaining factor ρij obtained perturbatively at one-loop.

* Two-loop corrections are incorporated in the chiral+continuum fit.

* Checked mNPR vs pure perturbative matching

(O1,2,3 mix under renormalization, as well as O4,5)



1.3 Chiral-Continuum extrapolation

Extrapolate the lattice data to the continuum and infinite volume limits,

and physical light quark masses in the Heavy Meson (HM)ChPT

framework:

* Including dominant light quark discretization effects (NLO Staggered HMChPT)

and NNLO ChPT analytic terms

* Gluon and light-quark discretization effects a la Symanzik

* Heavy-quark discretization effects (derived in HQET)

* Fine tuning mb.

* Include higher order renormalization effects, O(α2
s) in the fit.

Fi = F logs
i + F analytic

i +Fαsa
2

i +FHQ disc.
i +F

mb tune
i +F renor.

i
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1.3 Chiral-Continuum extrapolation

* O1,2,3 and O4,5 also mix

within ChPT.

* All operators are correlated via

common gauge fields and

valence quarks.

* Perform a simultaneous

(Bayesian) fit to all five

operators.



1.4 Stability under fit variations
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2.1. Matrix elements relevant for SM ∆Ms,d

In the SM, ∆Mq ∝
∣∣∣V ∗tqVtb∣∣∣2 f2

Bq
B̂

(1)
Bq

, where 8
3
f2
Bq
B

(1)
Bq

(µ)M2
Bq

= 〈Oq1〉(µ)
〉

f
2
Bd

BBd

(1)
〉

f
2
Bs

BBs

(1)

0.04 0.06 0.08 0.1

GeV
2

this work

RBC 14

Fermilab/MILC 12

Fermilab/MILC 11

HPQCD 09

ETM 13

Nf = 2+1

Nf = 2

    

ξ

1.15 1.21 1.27 1.33

Nf = 2+1

Nf = 2

    

This work: 1602.03560,

RBC 14: 1406.6192,

Fermilab/MILC 12:

1205.7013, Fermilab/MILC

11: 1112.5642

(proceedings), HPQCD 09:

0902.1815, ETM 13:

1308.1851

In the SU(3)-breaking ratio ξ =

√
f2
Bs
B̂

(1)
Bs

f2
Bd
B̂

(1)
Bd

, statistical and systematic uncertainties

largely cancel (1.5% error dominated by statistics and HQ disc.)



2.1. Matrix elements relevant for SM ∆Ms,d

In the SM, using tree-level inputs for the CKM matrix elements CKMfitter

and Fermilab-MILC 1602.03560 results

fBd

√
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= 227.7(9.5)(2.3) MeV , fBs

√
B̂

(1)
Bs

= 274.6(8.4)(2.7) MeV ,

ξ = 1.206(18)(6)



2.1. Matrix elements relevant for SM ∆Ms,d

In the SM, using tree-level inputs for the CKM matrix elements CKMfitter

and Fermilab-MILC 1602.03560 results

fBd

√
B̂

(1)
Bd

= 227.7(9.5)(2.3) MeV , fBs

√
B̂

(1)
Bs

= 274.6(8.4)(2.7) MeV ,

ξ = 1.206(18)(6)

we get

∆M
SM

d
= 0.630(53)(42)(5)(13) ps

−1
∆M

expt,HFAG

d
= 0.5064(19) ps

−1

∆M
SM

s
= 19.6(1.2)(1.0)(0.2)(0.4) ps

−1
∆M

expt,HFAG

s
= 17.757(21) ps

−1

(
∆Md/∆Ms

)SM
= 0.0321(10)(15)(0)(3) ps

−1

(where the errors are from lattice, CKM matrix elements, other inputs in SM expression, omission

of charm quark on the sea, respectively)

* These amount to tensions of 2.1σ, 1.3σ and 2.9σ, respectively.



2.2 Matrix elements relevant for BSM physics

Comparison with Nf = 2 ETM collaboration 1308.1851 results

Open symbols: ETM

Full symbols: our results

* Errors range from ∼ 5− 15%, larger for Bd matrix elements.



2.3 Extraction of CKM matrix elements

Alternatively, use ∆Mexpt
q HFAG 2014 and determine CKM factors

|Vtd |  × 10
3

|Vts |  × 10
3

7 8 9 35 39 43

∆Mq:

this work

PDG

B→K(π)µ
+
µ

−

CKM unitarity:

full

tree

   

   |V
td

 / V
ts

|  

0.18 0.19 0.20 0.21 0.22 0.23      

* B → K(π)µ+µ− results from D. Du et al, 1510.02349

* Full/tree CKM unitarity results come from CKMfitter’s fit using all inputs/only

observable mediated at tree level of weak interactions.
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* B → K(π)µ+µ− results from D. Du et al, 1510.02349

* Full/tree CKM unitarity results come from CKMfitter’s fit using all inputs/only

observable mediated at tree level of weak interactions.

Our results for |Vtd|, |Vts| are 2σ, 2.9σ below the CKM tree-fit results

* Errors dominated by lattice mixing matrix elements
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* Using fB = 193.6(4.2) MeV, fBs = 228.6(3.8) MeV fBs/fB = 1.187(15)

from Rosner, Stone, Van de Water, PDG review, 1509.02220 and our results → full

set of bag parameters (in the SM and beyond) and correlations

** For the SM RGI bag parameters we get

B̂
(1)
Bd

= 1.38(12)(6), B̂
(1)
Bs

= 1.443(88)(48),
B̂

(1)
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B̂
(1)
Bd

= 1.033(31)(26)

(errors from matrix elements and decay constants respectively)

The ratio is often used as an input for global CKM UT fits
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* Using fB = 193.6(4.2) MeV, fBs = 228.6(3.8) MeV fBs/fB = 1.187(15)

from Rosner, Stone, Van de Water, PDG review, 1509.02220 and our results → full

set of bag parameters (in the SM and beyond) and correlations

** For the SM RGI bag parameters we get

B̂
(1)
Bd

= 1.38(12)(6), B̂
(1)
Bs

= 1.443(88)(48),
B̂

(1)
Bd

B̂
(1)
Bd

= 1.033(31)(26)

(errors from matrix elements and decay constants respectively)

The ratio is often used as an input for global CKM UT fits

In progress: Correlated calculation of decay constants → decrease bag

parameters errors.



2.5 Rare decays B → µ+µ−

Bag parameters B̂Bd,s describing B-meson mixing in the SM can be used for (indirect)

theoretical predictions of B(B → µ+µ−) Buras hep-ph/0303060,Bobeth et al 1311.0903

(
Γ(Bq → µ+µ−)

∆Mq

)SM

=
3

π3

(GFMWmµ)2

η2BS0(xt)

C2
A(µb)

B̂
(1)
Bq

√√√√1−
4m2

µ

M2
Bq

(with CA(µb) including NLO EW and NNLO QCD corrections)

Herman,Misiak,Steinhauser 1311.1347,Bobeth,Gorbahn,Stamou, 1311.1348
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* Using our Nf = 2 + 1 B̂Bd,s , including the effects of a non-vanishing ∆Γs to

compute the time-averaged branching fractions B measured in experiment

(B(Bs → µ+µ−)SM = τHs
Γ(Bs → µ+µ−)SM, B(Bd → µ+µ−) = B(Bd → µ+µ−))

and the experimental ∆Mq HFAG 2014

B(Bd → µ+µ−)SM = 9.06(85)(4)(16) · 10−11

B(Bs → µ+µ−)SM = 3.22(22)(0)(6) · 10−9(
B(Bd→µ+µ−)

B(Bs→µ+µ−)

)SM

= 0.02786(109)(12)(19)

(with errors coming from bag parameters, experimental ∆Mq and others, respectively)



2.5 Rare decays B → µ+µ−

* SM predictions using

B(Bd → µ+µ−)SM = 9.06(85)(4)(16) · 10−11

B(Bs → µ+µ−)SM = 3.22(22)(0)(6) · 10−9(
B(Bd→µ+µ−)

B(Bs→µ+µ−)

)SM

= 0.02786(109)(12)(19)

To be compared with the experimental averages from LHCb and CMS 1411.4413

B(Bd → µ
+
µ
−

)
exp

= 3.9(
+1.6
−1.4)× 10

−10

B(Bs → µ
+
µ
−

)
exp

= 2.8(
+0.7
−0.6)× 10

−9(
B(Bd → µ+µ−)

B(Bs → µ+µ−)

)exp

= 0.14(
+0.08
−0.06)

B(Bs → µ+µ−) agrees with experiment, B(Bd → µ+µ−) is 2σ above

(symmetrizing exp. errors), and the ratio 1.6σ below.



3. Matrix elements contributing to ∆Γd,s

At NLO in the heavy quark expansion ∆ΓSM
q depends on

〈O1〉, 〈O3〉, 〈R0〉, 〈R1,2,3〉

* With FNAL/MILC 1602.03560: 〈O1〉 and 〈O3〉 known with 6% and 13% error.

* R0 = O1 + α1O2 + α2

2
O3 and R1 =

mq

mb
O4 calculated in FNAL/MILC 1602.03560

* VSA estimates for dimension-7 operators R2 and R3 (50% error)

〈R2〉 =
1

m2
b

(
b̄
i←−
Dαγ

ν
(1− γ5)D

α
q
i
) (
b̄
j
γ
ν
(1− γ5)q

j
)

〈R3〉 =
1

m2
b

(
b̄
i←−
Dα(1− γ5)D

α
q
i
) (
b̄
j
(1− γ5)q

j
)
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s uncertainties: 〈O1〉 (14%→ 6%), 〈R2〉 (15%) and renormalization

scale (8%) Artuso,Borissov,Lenz 1511.09466
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Dominant ∆ΓSM
s uncertainties: 〈O1〉 (14%→ 6%), 〈R2〉 (15%) and renormalization

scale (8%) Artuso,Borissov,Lenz 1511.09466

On-going: Nf = 2 + 1 + 1 HPQCD calculation of dimension-7 operators R2 (and R3)

(see M. Wingate talk at Lattice 2016)

* Goal: Reduce error in 〈R2〉 to 25% =⇒ ∆Γs error 19%→ 14%
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4. Conclusions and outlook

* First three-flavor results for full set of Bs,d mixing matrix elements

** All source of systematic uncertainty controlled.

** Most precise determination (1.6% error) of ξ and 〈Od,s1 〉.

* Most precise determination of |Vts| and |Vtd|: differ with expectations

from CKM unitarity (especially when only tree-level inputs are included)

* Several ∼ 2σ SM-experiment tensions in oscillations and rare decays.

* Using Fermilab-MILC results for Bs,d-meson mixing parameters 1602.03560, Vcb

1403.0635, 1503.07237 and Vub 1503.07839

Plot by E. Lunghi

Compatible with SM at p = 0.32,

but still ample room for BSM

flavor-changing neutral currents
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4. Conclusions and outlook

On-going Fermlab-MILC

Combined analysis of matrix elements and decay constants →
correlations → reduction of errors for bag parameters

Future

Use MILC Nf = 2 + 1 + 1 HISQ configurations and HISQ valence quarks

* Physical light quark masses → reduce (eliminate) chiral extr. error

* Eliminate charm quark sea error

* Smaller discretization error due to the HISQ action

Smaller lattice spacings, more accurate scale setting ...

On-going: another Lattice collaborations

* Nf = 2 + 1 + 1 HPQCD with HISQ light quarks and non-relativistic b.

Preliminary results 1411.6989
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