

Flagship Measurements on the Higgs Boson and new physics searches at LHC

Shashikant Dugad Tata Institute of Fundamental Research, Mumbai, INDIA for ATLAS-CMS Collaboration

CKM2016, 28 November – 02 December 2016

- Accelerator and Detectors
 - LHC
 - CMS and ATLAS
- Study of Higgs Properties using ATLAS and CMS data
 - Mass of Higgs
 - Production Mechanisms
 - Branching Fractions, Coupling
 - Cross Sections
 - Fiducial Cross Section
 - Differential Distributions

• BSM Searches mediated by Higgs

Higgs GRANNE-DIGITAL CAMERA GIGANTIC DIGITAL CAMERA

- Discovery of new boson by ATLAS and CMS detector announced in 2012 followed by its Higgs like nature confirmation in 2013
- Noble prize awarded for their predictions to P. Higgs and F. Englert in 2013

CMS,

40 Millions GeV 13000 second Accelerator (26.7 km) bunch crossings per **pp collision Energy** ð No.

F. Englert @ ATLAS

P. Higgs @ CMS

Citifr Outstanding Performance of LHC SATLAS

CMS Integrated Luminosity, pp, 2016, $\sqrt{s} = 13$ TeV

1/3rd of the data Analysis presented with \sim

CMS

tifr Higgs Production Mechanisms

CMS

ATLAS

Higgs Decay Modes

Decay Mode	B.R. (%)	Effective B.R. (%)	Mass Resolution (%)	Detection Sensitivity (S/B)
н→тт	0.228	0.228	1-2	<1
$H \rightarrow Z Z^* \rightarrow 4I$	2.67	0.0136	1-2	>1
$H \rightarrow W W^* \rightarrow 2I 2v$	21.6	1.01	30	<1
$H \rightarrow \tau^+ \tau^-$	6.30	6.30	10-20	<1
$H \rightarrow \mu^+ \mu^-$	0.022	0.022	1-2	<<1
$H \rightarrow b bbar$	57.5	57.5	X	<<1
$H \rightarrow c cbar$	2.90	2.90	X	X
$H \rightarrow g g$	8.56	8.56	X	X

- Cross sections measured in a phase space covered by observations are sensitive to the kinematics of production, decay mechanism, detector acceptance etc.
- Theoretical calculations of cross sections (fiducial cross section) estimated at par with phase space covered by experimental data reduces systematic uncertainties on calculations

$$\sigma^{tot} = \frac{N_s}{A.C.\mathcal{B}.\mathcal{L}_{int}}$$

 $\ensuremath{\mathcal{A}}$: kinematic and geometric acceptance in the fiducial volume

 \mathcal{B} : Branching Fraction

C : detector correction factor (reco., trigger and identification efficiency, resolution etc.)

N_s: number of measured signal events (after background subtraction)

coupling Strengths using H-3 YN

Higgs \rightarrow Y Y

Vertex ID Vertex ID Vertex assignment crucial for di-photon mass resolution - |Z_{chosen} - Z_{true}| < 1 cm Photon ID **ATLAS:** photon direction uses calorimeter data CMS Preliminary - Shower shape, isolation Events Data Simulation: - p_T(Y) > 25 GeV, $|\eta(Y)| < 2.37$, excluding 1.37< $|\eta(Y)| < 1.52$ 10^{7} $- p_T(Y_1) > 0.35m_{yy}, p_T(Y_2) > 0.25m_{yy}$ **γ**1 10⁶ CMS: 10 MVA based classifier to distinguish between prompt photons and

- Diphoton classification Shower shape, particle flow, isolation
- $p_T(Y_1) > 30 \text{ GeV}, p_T(Y_2) > 20 \text{ GeV}, |\eta(Y)| < 2.5),$
- excluding 1.44< $|\eta(Y)|$ <1.57, $p_T(Y_1)$ > 0.33 m_{YY} , p_{TYY2} > 0.25 m_{YY}
- Di-photon mass: $m_{\gamma\gamma} = \sqrt{2E_{\gamma 1}E_{\gamma 2}(1-\coslpha)}$

$$m_{\gamma\gamma} = \sqrt{2E_{\gamma1}E_{\gamma2}(1-\coslpha)}$$

tifr Run 2: Di-photon mass distribution **SATLAS**

Systematic Errors dominated by photon energy scale, resolution and background bias

CMS

- Observed significance 5.6σ (Expected: 6.2σ for the SM Higgs boson at m_H=125.09 GeV)
- The maximum observed significance is 6.1σ at m_H=126 GeV
- Observations consistent with Expected (σ x BR) _{SM}

 $\widehat{\mu} = 0.95 \pm 0.20 = 0.95 \pm 0.17$ (stat.) $^{+0.10}_{-0.07}$ (syst.) $^{+0.08}_{-0.05}$ (theo.).

ATLAS: $R_{obs} = \sigma_{VBF} / \sigma_{ggF} = 0.25^{+0.15}$ $R_{SM} = 0.079 \pm 0.004$ CMS: $\mu_{ggH,t\bar{t}H} = 0.80^{+0.14}_{-0.18}$ and $\mu_{VBF,VH} = 1.59^{+0.73}_{-0.45}$

CMS Run 1: Differential xSec for **tifr** Н→У У

19.7fb⁻¹ (8TeV)

EPJC 76 (2016) 13 CMS-PAS-HIG-14-016

2.5

З

CMS

0 0

0.1

0.2

0.3 0.4

0.5

0.6

0.7

0.8

0.9

 $|\cos\theta^*|$

0

0.5

1

1.5

2

2.5

З

 $\Delta \phi_{ii}$

O

tifr Fiducial Cross Section: H->Y Y Statlas

Measurements of fiducial cross section

13 TeV	Fiducial σ (fb)	SM prediction (fb)	
ATLAS (13.3 fb ⁻¹)	43.2±14.9(stat)±4.9(syst)	62.8 ^{+3.4} -4.4 (N ³ LO+XH)	
CMS (12.9 fb ⁻¹)	69+ ¹⁶ -22(stat) ⁺⁸ -6(syst)	73.8±3.8	

Shashikant Dugad, CKM2016

coupling strengths using H-> WW*, 72*

Muons: $p_{\rm T} > 5$ GeV, $|\eta| < 2.7$

Electrons: $p_{\rm T} > 7 \text{ GeV}, |\eta| < 2.47$

Leading pair:SFOS lepton pair with smallest $|m_Z - m_{\ell\ell}|$ Sub-leading pair:Remaining SFOS lepton pair with smallest $|m_Z - m_{\ell\ell}|$

Leading leptons $p_T > 20, 15, 10 \text{ GeV}$ $50 < m_{12} < 106 \text{ GeV}; 12 < m_{34} < 115 \text{ GeV}$ $\Delta R(\ell_i, \ell_j) > 0.1(0.2)$ for same(opposite)-flavour leptons $m(\ell_i, \ell_j) > 5$ GeV for all SFOS lepton pairs $115 < m_{4\ell} < 130$ GeV

ATLAS

Requirements for the $H \rightarrow 4\ell$ fiducial phase space				
Lepton kinematics and isolation				
Leading lepton $p_{\rm T}$	$p_{\rm T} > 20 { m GeV}$			
Next-to-leading lepton $p_{\rm T}$	$p_{\rm T} > 10 { m ~GeV}$			
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m ~GeV}$			
Pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$			
Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.4$ from lepton	$< 0.4 \cdot p_{\mathrm{T}}$			
Event topology				
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above				
Inv. mass of the Z_1 candidate	$40 \text{GeV} < m_{Z_1} < 120 \text{GeV}$			
Inv. mass of the Z_2 candidate	$12 \text{GeV} < m_{Z_2} < 120 \text{GeV}$			
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$			
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-} > 4\mathrm{GeV}$			
Inv. mass of the selected four leptons	$105{\rm GeV} < m_{4\ell} < 140{\rm GeV}$			

CMS at 13 TeV Observed 2.29^{+0.74}-0.64 (stat) ^{+0.30}-0.23 (syst) fb SM: 2.53 ± 0.13 fb ATLAS at 13 TeV Observed 59.0^{+9.7}_{-9.2} (stat) ^{+04.4}_{-3.5} (syst) pb SM: 55.5^{+9.7}_{-9.2} fb

2015 data (2.3 fb⁻¹) data analyzed for H→WW^{*} ATLAS-CONF-2016-112

2016 data analysis for this channel is under progress

Run 2: $H \rightarrow b b$

ATLAS: VH(→bb)

CMS: VBF H(→bb)

tifr Probing ttH Production Mechanism

- Probing Yukawa coupling between top and Higgs is very important
 - via ggF with no BSM particles in the loop
 - ttH provides direct access at tree level, via associated production of ttbar
 - $\sigma_{13 \text{ TeV}}(\text{ttH}) \sim 508 \text{ fb} \sim 4\sigma_{8 \text{ TeV}}(\text{ttH})$
- ttH(bb), ttH(W W^{*}), ttH(Z Z^{*}), ttH(τ ⁺τ ⁻), ttH (→γγ) topologies targeted with multi-leptons, displaced b-jets etc. in final states

$H \rightarrow \tau^+ \tau^-$ (BF: 6.3%) $H \rightarrow ZZ^*$ (BF: 2.67%) $H \rightarrow WW^*$ (BF 21.6%)

02 Dec. 2016

tifr

ttH Signal Strength

ttH (\rightarrow bb), ttH (\rightarrow WW^{*}), ttH (\rightarrow ZZ^{*}), ttH (\rightarrow $\tau^{+}\tau^{-}$), ttH (\rightarrow $\gamma\gamma\gamma$) targeted

CMS: μ < 1.5 (1.7) at 95% CL

ATLAS: *μ* < 4.0 at 95% CL

02 Dec. 2016

CMS

ATLAS-CONF-2016-080

- SM Higgs has both; bosonic and fermionic coupling
- Higgs $\rightarrow \tau^+ \tau^-$ is most sensitive fermionic decay channel of Higgs
- An important channel to test SM behavior of Higgs
 - Possible final states of τ_{decay} • ee, $\mu\mu$, $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$ q W/Z W/Z W/Z W/Z W/Z W/Z W/ZW/Z

τ_h = hadronic tau decay

ē,μ

(tifr Run 1 ATLAS: Higgs → T + T - SATLAS

- Evidence for H $\rightarrow \tau \tau$ decays at 4.5 σ (3.5 σ expected) with ATLAS data
- Run 2 data analysis under progress

$$\mu = 1.43^{+0.27}_{-0.26}(stat)^{+0.32}_{-0.25}(syst) \pm 0.09(theor)$$

CMS.

 $Higgs \rightarrow \mu^{+}\mu^{-}$

- A very rare decay in the SM (BF: 2.2 x 10⁻⁴)
 - Probe Yukawa-coupling to 2nd generation fermions and mass dependence
 - Test of the Higgs coupling to leptons
- Clean signature from dimuon final state
- Overwhelming irreducible background
 Z/γ*→μμ
- Analysis strategy:
 - Search for peak in di-muon mass spectrum over smoothly falling background
- Categorize events according to VBF and ggF signature enriched

Run 1: μ < 7.4 (6.4) @95%C PLB744 (2015), 184-207

ATLAS-CONF-2016-041

ATLAS	Upper limit x SM (expected)	
Run 1	7.1 (7.2)	
Run 2	4.4 (5.5)	
Combined Run 1 and Run 2	3.5 (4.5)	

- A standard model Higgs decaying to invisible particles
 - Higgs mediated Dark Matter

BF(→Invisible) → Width → Coupling →Cross Section for Higgs mediated DM production

Table 11: Parameters in the Higgs-portal dark-matter model.

Vacuum expectation value	$v/\sqrt{2}$	174 GeV
Higgs boson mass	m_H	125 GeV
Higgs boson width	Γ_H	4.07 MeV
Nucleon mass	m_N	939 MeV
Higgs-nucleon coupling form factor	f_N	$0.33^{+0.30}_{-0.07}$

■ Direct Search for H → Invisible

CMS

EXPERIMEN

ATLAS: JHEP 03 (2015) 088 ATLAS-CONF-2016-088 **ATLAS-CONF-2016-089** Phys. Lett. B 759 (2016) 555-574 Eur. Phys. J. C, 73 6 (2013) 2465 JHEP 11 (2015) 206

CMS: CMS-PAS-HIG-2016-030 CMS-PAS-HIG-2016-031 JHEP 12 (2015) 1

c+s-bar t+b-bar

Search for Charged Higgs

- 2 Higgs Doublet Model predicts 5 scalar Higgs boson (h, H, A, H[±])
- Charged Higgs can decay into τv_{τ} , tb, cb, cs depending on the parameters of the model
 - Cos(β-α)→0 → dominant decay into τv_{τ}
 - Type II 2HDM → dominant decay into tb

Search for Charged Higgs

- Exploration of SM Higgs properties begun with Run-2 data
- Various Production mechanism and Decay modes of Higgs have been probed extensively using Run-2 data
- Results presented using ~1/3rd of 2016 (13 TeV) data
- Accurate measurements of BF, couplings, correlation between bosonic and fermionic coupling with more data from Run-2 would be accomplished

tifr Run 1: Combined Coupling Strengths **EXPERIMENT**

Mass: 125.09 ± 0.24 GeV

Spin: 0, Parity: Even

Consistency of SM expectation with μ =1 with a p-value of 40%

Mild excess in ttH and ZH production modes

CMS

Run 1 Relative Couplings

Reference channel:

- $ggF \rightarrow H \rightarrow ZZ \rightarrow 4I$
- Small background
- Smallest uncertainties

$$\frac{\sigma_{ttH}}{\sigma_{ggF}} = 3.3^{+1.0}_{-0.9}$$
$$\frac{\sigma_{ZH}}{\sigma_{ggF}} = 3.2^{+1.8}_{-1.4}$$
$$\frac{B^{bb}}{B^{ZZ}} = 0.19^{+0.21}_{-0.12}$$

Mid excess in ttH in multi-lepton channel Mild excess in $ZH \rightarrow WW$ Deficit in $VH \rightarrow bb$

Overall SM Compatibility: 16%

$H \rightarrow$ gama gama

Angular Distribution

