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38. Supernovae and Cosmic Rays. W. BAADE, M¢.
Wilson Observatory, AND F. ZwWICcKY, California Institule

of Technology.—Supernovae flare up in every stellar system
(nebula) once in several centuries.

With all reserve we advance the
view that supernovae represent the transitions from
ordinary stars into neulron stars, which in their final stages
consist of extremely closely packed neutrons.
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...and has been observed across the
electromagnetic spectrum, and in neutrinos.
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A shock forms and stalls. Neutrino heating/cooling and
changes in nuclear composition impact its fate.
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A shock forms and stalls. Neutrino heating/cooling and
changes in nuclear composition impact its fate.

Core Collapse and Explosion




Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission

Infall e” capture / ve emission



Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission

Bounce; shock formation, stall,
and revival



Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission

Bounce; shock formation, stall,
and revival

Neutron star kick



Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission

Bounce; shock formation, stall,
and revival

Neutron star kick

Gravitational waves



Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission
Bounce; shock formation, stall, v emission weakens shock,
and revival v absorption strengthens it

Neutron star kick

Gravitational waves



Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission
Bounce; shock formation, stall, v emission weakens shock,
and revival v absorption strengthens it
Neutron star kick Ve burst at shock breakout

Gravitational waves



Core-collapse supernova

Massive stellar progenitor
Infall

Bounce; shock formation, stall,
and revival

Neutron star kick

Gravitational waves

Core-collapse v extravaganza

e” degeneracy, v pair emission
e” capture / ve emission

v emission weakens shock,
v absorption strengthens it

Ve burst at shock breakout

v pair emission from accretion



Core-collapse supernova

Massive stellar progenitor
Infall

Bounce; shock formation, stall,
and revival

Neutron star kick

Gravitational waves

Kelvin-Helmholtz contraction,
then cooling of neutron star

Core-collapse v extravaganza

e” degeneracy, v pair emission
e” capture / ve emission

v emission weakens shock,
v absorption strengthens it

Ve burst at shock breakout

v pair emission from accretion



Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission
Bounce; shock formation, stall, v emission weakens shock,
and revival v absorption strengthens it
Neutron star kick Ve burst at shock breakout
Gravitational waves v pair emission from accretion
Kelvin-Helmholtz contraction, Deleptonization and energy release

then cooling of neutron star via v emission



Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission
Bounce; shock formation, stall, v emission weakens shock,
and revival v absorption strengthens it
Neutron star kick Ve burst at shock breakout
Gravitational waves Vv pair emission from accretion
Kelvin-Helmholtz contraction, Deleptonization and energy release
then cooling of neutron star via v emission

e” capture / ve emission



Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission
Bounce; shock formation, stall, v emission weakens shock,
and revival v absorption strengthens it
Neutron star kick Ve burst at shock breakout
Gravitational waves Vv pair emission from accretion
Kelvin-Helmholtz contraction, Deleptonization and energy release
then cooling of neutron star via v emission

e” capture / ve emission

V pair emission



Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission
Bounce; shock formation, stall, v emission weakens shock,
and revival v absorption strengthens it
Neutron star kick Ve burst at shock breakout
Gravitational waves Vv pair emission from accretion
Kelvin-Helmholtz contraction, Deleptonization and energy release
then cooling of neutron star via v emission

e” capture / ve emission

V pair emission

(If rapid rotation: accretion disk
and jet formation)



Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission
Bounce; shock formation, stall, v emission weakens shock,
and revival v absorption strengthens it
Neutron star kick Ve burst at shock breakout
Gravitational waves Vv pair emission from accretion
Kelvin-Helmholtz contraction, Deleptonization and energy release
then cooling of neutron star via v emission

e” capture / ve emission

V pair emission

(If rapid rotation: accretion disk
and jet formation)

(If H/He envelope lost, i.e. if
Type Ib/Ic: Gamma-ray burst)



Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission
Bounce; shock formation, stall, v emission weakens shock,
and revival v absorption strengthens it
Neutron star kick Ve burst at shock breakout
Gravitational waves Vv pair emission from accretion
Kelvin-Helmholtz contraction, Deleptonization and energy release
then cooling of neutron star via v emission

e” capture / ve emission

V pair emission

(If rapid rotation: accretion disk (v pair annihilation helps power jet?)
and jet formation)

(If H/He envelope lost, i.e. if
Type Ib/Ic: Gamma-ray burst)



Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission
Bounce; shock formation, stall, v emission weakens shock,
and revival v absorption strengthens it
Neutron star kick Ve burst at shock breakout
Gravitational waves Vv pair emission from accretion
Kelvin-Helmholtz contraction, Deleptonization and energy release
then cooling of neutron star via v emission

e” capture / ve emission

V pair emission

(If rapid rotation: accretion disk (v pair annihilation helps power jet?)
and jet formation)

(If H/He envelope lost, i.e. if (v emission from accretion disk)
Type Ib/Ic: Gamma-ray burst)



Core-collapse supernova Core-collapse v extravaganza

Massive stef
Infall

e” degeneracy, v pair emission

e” capture / ve emission

v emission weakens shock,

< 1% of totalw

energy release
Bounce; sho¢

and revival v absorption strengthens it
Neutron star kick Ve burst at shock breakout
Gravitational waves v pair emission from accretion
Kelvin-Helmholtz contraction, Deleptonization and energy release
then cooling of neutron star via v emission

e” capture / ve emission

V pair emission

(If rapid rotation: accretion disk (v pair annihilation helps power jet?)
and jet formation)

(If H/He envelope lost, i.e. if (v emission from accretion disk)
Type Ib/Ic: Gamma-ray burst)



Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission

Infall e” capture / ve emission

v emission weakens shock,
v absorption strengthens it

Bounce; shock formation, stall,
and revival - ~

Neutron st3' <40%, of total
Gravitation

Ve burst at shock breakout

v pair emission from accretion

energy release
Kelvin-Hel / Deleptonization and energy release
then cooling of neutron star via v emission

e” capture / ve emission

V pair emission

(If rapid rotation: accretion disk (v pair annihilation helps power jet?)
and jet formation)

(If H/He envelope lost, i.e. if (v emission from accretion disk)
Type Ib/Ic: Gamma-ray burst)



Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission
Bounce; shock formation, stall, v emission weakens shock,
and revival v absorption strengthens it
Neutron star kick Ve burst at shock breakout
Gravitational waves Vv pair emission from accretion

Kelvin-Helmholtz contraction,

then coolil}g—af—nm—*—mn—ahm\

~90% of total
energy release

Deleptonization and energy release
via v emission

e” capture / ve emission

V pair emission

(If rapid ro k (v pair annihilation helps power jet?)
and jet formation)
(If H/He envelope lost, i.e. if (v emission from accretion disk)

Type Ib/Ic: Gamma-ray burst)



Core-collapse supernova Core-collapse v extravaganza



Core-collapse supernova Core-collapse v extravaganza

Explosive nucleosynthesis,
r-process nucleosynthesis



Core-collapse supernova Core-collapse v extravaganza

Explosive nucleosynthesis,
r-process nucleosynthesis

Enrichment of ISM



Core-collapse supernova Core-collapse v extravaganza

Explosive nucleosynthesis, v absorption affects outcomes
r-process nucleosynthesis

Enrichment of ISM



Core-collapse supernova

Explosive nucleosynthesis,
r-process nucleosynthesis

Enrichment of ISM

Supernova remnant expansion

Core-collapse v extravaganza

v absorption affects outcomes



Core-collapse supernova

Explosive nucleosynthesis,
r-process nucleosynthesis

Enrichment of ISM

Supernova remnant expansion

Optical emission powered by
recombination, radioactive decay,
pulsar spin-down; light curves,
spectra, spectropolarimetry

Core-collapse v extravaganza

v absorption affects outcomes



Core-collapse supernova Core-collapse v extravaganza

Explosive nucleosynthesis, v absorption affects outcomes
r-process nucleosynthesis

Enrichment of ISM

Supernova remnant expansion

Optical emission powered by
recombination, radioactive decay,
pulsar spin-down; light curves,
spectra, spectropolarimetry

Radio synchrotron emission



Core-collapse supernova Core-collapse v extravaganza

Explosive nucleosynthesis, v absorption affects outcomes
r-process nucleosynthesis

Enrichment of ISM

Supernova remnant expansion

Optical emission powered by
recombination, radioactive decay,
pulsar spin-down; light curves,
spectra, spectropolarimetry

Radio synchrotron emission

X-ray synchrotron, thermal and
line emission



Core-collapse supernova Core-collapse v extravaganza

Explosive nucleosynthesis, v absorption affects outcomes
r-process nucleosynthesis

Enrichment of ISM

Supernova remnant expansion

Optical emission powered by
recombination, radioactive decay,
pulsar spin-down; light curves,
spectra, spectropolarimetry

Radio synchrotron emission

X-ray synchrotron, thermal and
line emission

Acceleration of cosmic rays, high-
energy photons



Core-collapse supernova Core-collapse v extravaganza

Explosive nucleosynthesis, v absorption affects outcomes
r-process nucleosynthesis

Enrichment of ISM
Supernova remnant expansion n production

Optical emission powered by
recombination, radioactive decay,
pulsar spin-down; light curves,
spectra, spectropolarimetry

Radio synchrotron emission

X-ray synchrotron, thermal and
line emission

Acceleration of cosmic rays, high-
energy photons



Core-collapse supernova Core-collapse v extravaganza

Explosive nucleosynthesis, v absorption affects outcomes
r-process nucleosynthesis
Enrichment of ISM
Supernova remnant expansion n production
Optical emission powered by High-energy v emission from mand p
recombination, radioactive decay, decay

pulsar spin-down; light curves,
spectra, spectropolarimetry

Radio synchrotron emission

X-ray synchrotron, thermal and
line emission

Acceleration of cosmic rays, high-
energy photons



Core-collapse supernova Core-collapse v extravaganza

Explosive nucleosynthesis, v absorption affects outcomes
r-process nucleosynthesis
Enrichment of ISM
Supernova remnant expansion n production
Optical emission powered by High-energy v emission from mand p
recombination, radioactive decay, decay

pulsar spin-down; light curves,
spectra, spectropolarimetry

Radio synchrotron emission

X-ray synchrotron, thermal and
line emission

Acceleration of cosmic rays, high-
energy photons

Compact remnant evolution



Core-collapse supernova Core-collapse v extravaganza

Explosive nucleosynthesis, v absorption affects outcomes
r-process nucleosynthesis
Enrichment of ISM
Supernova remnant expansion n production
Optical emission powered by High-energy v emission from mand p
recombination, radioactive decay, decay

pulsar spin-down; light curves,
spectra, spectropolarimetry

Radio synchrotron emission

X-ray synchrotron, thermal and
line emission

Acceleration of cosmic rays, high-
energy photons

Compact remnant evolution
Radio, X-ray, ... pulsars



Core-collapse supernova Core-collapse v extravaganza

Explosive nucleosynthesis, v absorption affects outcomes
r-process nucleosynthesis
Enrichment of ISM
Supernova remnant expansion n production
Optical emission powered by High-energy v emission from mand p
recombination, radioactive decay, decay

pulsar spin-down; light curves,
spectra, spectropolarimetry

Radio synchrotron emission

X-ray synchrotron, thermal and
line emission

Acceleration of cosmic rays, high-
energy photons

Compact remnant evolution
Radio, X-ray, ... pulsars

(Magnetars/anomolous X-ray
pulsars/soft-gamma repeaters)



Core-collapse supernova Core-collapse v extravaganza

Explosive nucleosynthesis, v absorption affects outcomes
r-process nucleosynthesis
Enrichment of ISM
Supernova remnant expansion n production
Optical emission powered by High-energy v emission from mand p
recombination, radioactive decay, decay

pulsar spin-down; light curves,
spectra, spectropolarimetry

Radio synchrotron emission

X-ray synchrotron, thermal and
line emission

Acceleration of cosmic rays, high-
energy photons

Compact remnant evolution v emission contributes to long-term
Radio, X-ray, ... pulsars cooling

(Magnetars/anomolous X-ray
pulsars/soft-gamma repeaters)



Core-collapse supernova

Explosive nucleosynthesis,
r-process nucleosynthesis

Supernova remnant expansion

Optical emission powered by
recombination, radioactive decay,
pulsar spin-down; light curves,
spectra, spectropolarimetry

Radio synchrotron emission

X-ray synchrotron, thermal and
line emission

Acceleration of cosmic rays, high-
energy photons

Compact remnant evolution
Radio, X-ray, ... pulsars

(Magnetars/anomolous X-ray
pulsars/soft-gamma repeaters)

Core-collapse v extravaganza

outcomes

~1% of total

energy release
/

High-energy v emission from m and p
decay

v emission contributes to long-term
cooling



Core-collapse supernova Core-collapse v extravaganza

Explosive nucleosynthesis, v absorption affects outcomes
r-process nucleosynthesis

Enrichment of ISM

Supernova remnant expansion n production

Optical emission powered by
recombination, radioactive decay,
pulsar spin-down; light curves,
spectra, spectropolarimetry

High-energy v emission from m and p

decay -

~0.01% of total
energy release

ad1lo synchrotron emission

X-ray synchrotron, thermal and J
line emission
Acceleration of cosmic rays, high-
energy photons
Compact remnant evolution v emission contributes to long-term

Radio, X-ray, ... pulsars cooling

(Magnetars/anomolous X-ray
pulsars/soft-gamma repeaters)



At least five phases of neutrino emission can be

identified.



At least five phases of neutrino emission can be

identified.

oA
ou

~
_0’2
\\‘
cw
| -
Q
o
™
-
—_—
)
_:
w
—
N
W

B
C“\

NS
o
<




At least five phases of neutrino emission can be

identified.

oA
ou

~
_0’2
\\‘
cw
| -
Q
o
™
-
—_—
)
_:
w
—
N
W

B
C“\

NS
o
<




At least five phases of neutrino emission can be

identified.

60

M~
wn
~
C\
| -
Q
0
o
=
—_—
\

_
w
—
/




At least five phases of neutrino emission can be

identified.

60

M~
wn
~
C\
| -
Q
0
o
=
—_—
\

_
w
—
/




At least five phases of neutrino emission can be

identified.

60

M~
wn
~
C\
| -
Q
0
o
=
—_—
\

_
w
—
/




At least five phases of neutrino emission can be

identified.

GM3npH

L, (105 ergs/s)

—_—

o
—_—
Ol— T Illll”]




At least five phases of neutrino emission can be

identified.

GM3npH

—_—

L, (105 ergs/s)

—
—_—




At least five phases of neutrino emission can be

identified.

—
-
Q
=

S
AN

3
=]
Vv

GM3npH

—_—

L, (105 ergs/s)

—
—_—




Can the central features be simply derived?



Can the central features be simply derived?

From nature’s perspective: YES



Can the central features be simply derived?

From nature’s perspective: YES

The basic features of neutrino emission can be estimated by fairly
simple means.

CYC astro-ph/0701831, arXiv:0812.0114



Can the central features be simply derived?

From nature’s perspective: YES

The basic features of neutrino emission can be estimated by fairly
simple means.

CYC astro-ph/0701831, arXiv:0812.0114

From a perspective of anthropocentric chauvinism: NO



Can the central features be simply derived?

From nature’s perspective: YES

The basic features of neutrino emission can be estimated by fairly
simple means.

CYC astro-ph/0701831, arXiv:0812.0114

From a perspective of anthropocentric chauvinism: NO

Elucidation of the explosion mechanism requires detailed simulation.
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Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission
Bounce; shock formation, stall, v emission weakens shock,
and revival v absorption strengthens it
Neutron star kick Ve burst at shock breakout
Gravitational waves Vv pair emission from accretion
Kelvin-Helmholtz contraction, Deleptonization and energy release
then cooling of neutron star via v emission

e” capture / ve emission

V pair emission

(If rapid rotation: accretion disk (v pair annihilation helps power jet?)
and jet formation)

(If H/He envelope lost, i.e. if (v emission from accretion disk)
Type Ib/Ic: Gamma-ray burst)
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Heating/cooling rates depend on accurate
evolution of neutrino distributions.
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Heating/cooling rates depend on accurate
evolution of neutrino distributions.
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Simulation of collapse and launch of the
explosion involves a wide range of physics.

Tangent bundle:

Spacetime includes all three space dimensions, with good
resolution on a wide range of length and time scales.

Momentum space includes all three dimensions, with good
resolution of energies and angles.

Self-gravity is treated with general relativity.
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Simulation of collapse and launch of the
explosion involves a wide range of physics.

Magnetofluid:

The treatment of ideal magnetohydrodynamics must be able to
handle shocks.

Nuclear composition changes involving strong, electromagnetic,
and weak reactions should be tracked in regimes ranging from
fully kinetic through (quasi-)NSE, for a very wide range of species.

An equation of state that includes bulk nuclear matter in neutron-
rich conditions is required.
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Simulation of collapse and launch of the
explosion involves a wide range of physics.

Neutrino distributions:

Transport must be computed in diffusive, decoupling, and free-
streaming regimes.

Neutrino interactions with all fluid components must be included.

Neutrino interactions with other neutrinos and antineutrinos
must be included.

Neutrino flavor mixing should be included (spacetime trajectories
are still classical, but flavor content must be evolved quantum
mechanically on macroscopic scales).
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There is a need for a neutrino transport
formalism that includes:

Flavor mixing
Time dependence
Space dependence

Collisions in degenerate conditions

Dolgov (1981) Sirera and Perez (1999)
Rudzky (1990) Yamada (2000)

Barbieri and Dolgov (1991) Prakash et al. (2001)

Sigl and Raffelt (1993) Strack and Burrows (2005)
McKellar and Thomson (1994) Cardall (2008)

Qian and Fuller (1995) Cardall (in preparation)
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How can a transport formalism with flavor
mixing be derived?

Use quantum field theory as the underlying framework.

Use a Wigner transformation to obtain a ‘mixed representation’
of two-point correlation functions.

Apply classicality conditions to obtain distribution matrices.

Derive a transport equation from equations of motion for the
quantum fields.

Use the interaction picture to set up a diagrammatic formalism
to handle interactions.
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Neutrino transport in the decoupling regime
and complete composition tracking are both
overwhelming in their computational demands.

As an example, consider how easily the
inversion of dense blocks arising from

momentum space coupling can exhaust
exascale resources.

2
NFLOP it Nt Niterations Nx Np

Nrrop
I wanl =

Np = N, Ng Ny Ny
erL.OP RrLoP

Nt Niterations Nx Np . RFLOP €EFLOP
Toyal ~ 7 weeks | — —x ) (2 (o8 )
15 (106) ( 20 ) (106) (105) 108 51 ) \0.05
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Confidence in the simulations derives from
successful confrontations with observational
data.

Launch of an explosion

Neutron star mass, magnetic field, and kick velocity

Composition of ejecta

Explosion morphology

Neutrino signals

Gravitational wave signals
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Two observables, beyond explosion, related to v
transport:

Accretion continues until the stalled shock is reinvigorated:
relation between neutron star mass and delay to explosion

The abundance of nuclei with a closed shell of 50 neutrons

The electron fraction...

N,- — N+ Nproton
Y = 3

nbaryons nproton + Ilneutron

...1s set by v interactions:

Ye +tN & Pp+e
Ve+pon+e’
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Proto neutron star convection
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Fluid dynamics:
¢ 1’5D”

Neutrino transport:

1D+ 1D

Mass trajectory points versus time
Solid: every fifth mass point Dashed: mass points 108 and 109
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Fluid mixing prescription in the core
boosts neutrino luminosities; not
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Post-shock convection
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Neutrino transport: Neutrino transport:
1D+ 1D 2D + 0D, 3D+OD

ENTROPY

Neutron star mass too small; heating
drives explosion too soon.

N=50 overproduction; Y, too low.
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Fluid dynamics:
1D

Neutrino transport:

1D+ 2D
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Reasonable N=50 element production
expected; ejected matter has Y, > 0.46.

May explain some subluminous Type II-P.
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Convection, rotation, and magnetic fields all
come into play.
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Convection, rotation, and magnetic fields all
come into play.
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The stationary accretion shock is intrinsically
unstable and could generate phenomena
traditionally attributed to progenitor rotation.



e —
= C
O =
° mumw .“mmw
m =
= o
S O &
N

oy

Aspherical explosion
1 morphology

4

SvASESESS

AR
P/.P o\ L/s

NN /\/.)/n
TR f&(/ﬁ/«/
o N S h\\an;ﬂvJvl
?.71 N c-q»

o 7.am““\.\

et R AR N
y??..llﬂ.ﬂﬁ‘

et
USASAS

BN Gt

B O a)ad e

L I

LU R SER ERER ERNERES N
Ao B o ATy . . LSRR
£244 0 .

w

unstable and could generate phenomena

traditionally attributed to progen

The stationary accretion shock

(€007) ourre|\a(J pue ‘eddesezzay ‘urpuolg



The stationary accretion shock is intrinsically
unstable and could generate phenomena
traditionally attributed to progenitor rotation.
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Blondin, Mezzacappa, and DeMarino (2003)

The stationary accretion shock is intrinsically
unstable and could generate phenomena
traditionally attributed to progenitor rotation.

Endeve et al. (2008)
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Fluid dynamics:

2D

Neutrino transport:

2D+ 1D

Burrows et al. (2006)
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Buras et al. (2006) Bruenn et al. (2006)




Fluid dynamics: Fluid dynamics:

2D 2D
Neutrino transport: Neutrino transport:
1.5D + 2D 1.5D + 1D
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Reasonable neutron star mass; accretion
continues during delay.

_ . Reasonable N=50 element production
T expected; some ejecta have Y. > 0.5.

Acoustic mechanism not yet clearly probed.
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A key feature of the history of supernova
simulations is the ongoing increase in total
dimensionality.

Neutrino radiation transport
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The Oak Ridge and Garching groups both see
SASI-aided neutrino-driven explosions across a
range of progenitor masses.

The Tucson / Princeton group does not see
neutrino-driven explosions, but instead SASI-
aided acoustically-driven explosions at a later
time.

Differences include but are not limited to
“Ray-by-ray” neutrino transport vs. flux-limited diffusion

Inclusion of Doppler shift terms, completeness of energy
exchange interactions in neutrino transport

Treatment of gravity: partially relativistic, partially conservative



Simulations of the explosion mechanism lack
flavor mixing and adequate evolution time.



Simulations of the explosion mechanism lack
flavor mixing and adequate evolution time.

Calculations of flavor mixing lack
multidimensionality, collisions, Doppler and
gravitational redshift and aberration, self-
consistency with the fluid background, and time
dependence.
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Explosion Energy versus Progenitor Mass

Wossley-Heger 12, 15, 20, 25 Solar Mass Nonrotating Progenitors; 256 x 256 Spatial Resolution
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E-Neutrino Luminosity vs Time and Polar Angle E-Antineutrino Luminosity vs Time and Polar Angle

25 Solar Mass W-H Progenitor, 2D Simulation 25 Solar Mass W-H Progenitor, 2D Simulation
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E-Neutrino RMS Energy vs Time and Polar Angle E-Antineutrino RMS Energy vs Time and Polar Angle
25 Solar Mass W-H Progenitor, 2sD Simulation
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Shock Radii vs Time from Bounce Shock Radii vs Time from Bounce
W-H 15 Solar Mass Progenitor; Effect of Dimensionality and Neutrino Rates W-H 15 Solar Mass Progenitor; Resolution Comparison
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