Multiple Splits in Supernova Neutrino Spectra And r-Process Nucleosynthesis Sovan Chakraborty

Saha Institute of Nuclear Physics, Kolkata

arxiv:0911.1218 [hep-ph] (S.C, S.Choubey, S.Goswami, K.Kar)

Plan of the Talk:

Collective Effect and Luminosity Variation

r-Process Nucleosynthesis and Collective Effect

Remarks .

Collective Effect and Luminosity Variation

SN and Neutrino (Raffelt's slide JIGSAW'07)

Different Oscillation Modes in Supernovae

Collective effect

– p.5

Ensemble of relativistic neutrinos and Antineutrinos. Evolution equations are

$$\partial_t \rho = -i[H,\rho] , \ \partial_t \bar{\rho} = -i[H,\bar{\rho}]$$

Hamiltonian of a neutrino/antineutrino in the ensemble.

 $H = H_{vacuum} + H_{MSW} + H_{\nu\nu}$

Bloch vector and E.O.M:

For a 2×2 Hermetian Matrix M

$$M = \frac{1}{2}(1 + \mathbf{m}.\bar{\sigma})$$

Where σ Pauli spin Matrices and $\mathbf{m} (m_x, m_y, m_z)$ is called the Bloch Vector. Bloch vectors corresponding to ρ , $\bar{\rho}$, H_{vacuum} , H_{MSW} , $H_{\nu\nu}$ are \mathbf{P} , \mathbf{P}' , \mathbf{B} , \mathbf{L} , \mathbf{D} respectively.

E.O.M for neutrino and antineutrino polarization vector P and P'

$\dot{\mathbf{P}} = (\omega \mathbf{B} + \lambda \mathbf{\hat{L}} + \mu \mathbf{D}) \times \mathbf{P}$ $\dot{\mathbf{P}}' = (-\omega \mathbf{B} + \lambda \mathbf{\hat{L}} + \mu \mathbf{D}) \times \mathbf{P}'$

E.O.M for neutrino and antineutrino polarization vector P and P'

$$\dot{\mathbf{P}} = (\omega \mathbf{B} + \lambda \hat{\mathbf{L}} + \mu \mathbf{D}) \times \mathbf{P}$$
$$\dot{\mathbf{P}}' = (-\omega \mathbf{B} + \lambda \hat{\mathbf{L}} + \mu \mathbf{D}) \times \mathbf{P}'$$
$$\mathbf{B} = (sin2\theta, 0, -cos2\theta)^T \quad ; \quad \omega = \frac{\Delta^2}{2E}$$

E.O.M for neutrino and antineutrino polarization vector P and P'

$$\dot{\mathbf{P}} = (\omega \mathbf{B} + \lambda \hat{\mathbf{L}} + \mu \mathbf{D}) \times \mathbf{P}$$
$$\dot{\mathbf{P}}' = (-\omega \mathbf{B} + \lambda \hat{\mathbf{L}} + \mu \mathbf{D}) \times \mathbf{P}'$$
$$\hat{\mathbf{L}} = (0, 0, 1)^T \cdot \lambda = \sqrt{2}G_T N_s$$

E.O.M for neutrino and antineutrino polarization vector P and P'

$$\dot{\mathbf{P}} = (\omega \mathbf{B} + \lambda \hat{\mathbf{L}} + \mu \mathbf{D}) \times \mathbf{P}$$
$$\dot{\mathbf{P}}' = (-\omega \mathbf{B} + \lambda \hat{\mathbf{L}} + \mu \mathbf{D}) \times \mathbf{P}'$$
$$\mathbf{D} = \frac{1}{(N_{\nu_e} + N_{\nu_x} + N_{\bar{\nu}_e} + N_{\bar{\nu}_x})} \int dE(n\mathbf{P} - \bar{n}\mathbf{P}')$$
$$\mu = \sqrt{2}G_F(N_{\nu_e} + N_{\nu_x} + N_{\bar{\nu}_e} + N_{\bar{\nu}_x})$$

$$n = n_{\nu_e} + n_{\nu_x}$$
; $\bar{n} = n_{\bar{\nu}_e} + n_{\nu_x}$

where n_{α} 's are the effective number per unit volume per unit energy and given by

$$n_{\alpha}(r, E) = \frac{D(r)}{2\pi R_{\alpha}^2} \frac{L_{\alpha}}{\langle E_{\alpha} \rangle} \Psi(E)_{\alpha}$$

 N_{α} 's represent the total effective number density of the α th species.

$$N_{\alpha} = \int dE \ n_{\alpha}$$

Initial Energy Distribution :

Effective number density for the α th species per unit energy

$$n_{\alpha}(r,E) = \frac{D(r)}{2\pi R_{\alpha}^2} \frac{L_{\alpha}}{\langle E_{\alpha} \rangle} \psi(E)_{\alpha}$$

Fermi-Dirac

$$\Psi_{\alpha}^{FD}(E) \propto \frac{\beta_{\alpha} \ (\beta_{\alpha}E)^2}{e^{\beta_{\alpha}E} + 1}$$

where the inverse temperature parameters are

$$\beta_{\nu_e} = 0.315 \ MeV^{-1}; \ \beta_{\bar{\nu}_e} = 0.210 \ MeV^{-1}$$
$$\beta_{\nu_x} = \beta_{\bar{\nu}_x} = 0.131 MeV^{-1}.$$

Initial Flux (FD)

Flux Collective Effect

- p.15

Pinched Energy Distribution :

Effective number density for the α th species per unit energy

$$n_{\alpha}(r, E) = \frac{D(r)}{2\pi R_{\alpha}^2} \frac{L_{\alpha}}{\langle E_{\alpha} \rangle} \psi(E)_{\alpha}$$

Pinched spectra for different simulations are parameterized as

$$\Psi_{\alpha}(E) = \frac{(1+\zeta_{\alpha})^{1+\zeta_{\alpha}}}{\Gamma(1+\zeta_{\alpha})} \left(\frac{E_{\alpha}}{\langle E_{\alpha} \rangle}\right)^{\zeta_{\alpha}} \frac{\exp\left(-(1+\zeta_{\alpha})\frac{E_{\alpha}}{\langle E_{\alpha} \rangle}\right)}{\langle E_{\alpha} \rangle},$$

Keil et al. ApJ(2003)

where ζ_{α} is the pinching parameter Different simulation models have different ζ_{α} and $\langle E_{\alpha} \rangle$

Initial Neutrino Flux:

The initial flux $(\phi_{\nu_{\alpha}}^{0} = \frac{L_{\alpha}}{\langle E_{\alpha} \rangle})$ is another important input parameter.

Total emitted SN energy ($E_B = 3 \times 10^{53}$ erg) puts a constraint on flavor luminosities.

$$L_{\nu_e} + L_{\bar{\nu}_e} + 4L_{\nu_x} = \frac{E_B}{\tau}$$

where τ is the luminosity decay timescale. We took $\tau = 10$ seconds. Thus the initial fluxes of different flavors are also constrained

$$\phi_{\nu_e}^0 \langle E_{\nu_e} \rangle + \phi_{\bar{\nu}_e}^0 \langle E_{\bar{\nu}_e} \rangle + 4\phi_{\nu_x}^0 \langle E_{\nu_x} \rangle = 3 \times 10^{52}$$

Initial Neutrino Fluxes

If the ratio between the initial fluxes of different flavors are

$$\phi_{\nu_e}^0: \phi_{\bar{\nu}_e}^0: \phi_{\nu_x}^0 = \phi_{\nu_e}^r: \phi_{\bar{\nu}_e}^r: 1 ,$$

where $\phi_{\nu_e}^r$, $\phi_{\overline{\nu}_e}^r$ are positive numbers.

$$\phi_{\nu_x}^0(\phi_{\nu_e}^r \langle E_{\nu_e} \rangle + \phi_{\bar{\nu}_e}^r \langle E_{\bar{\nu}_e} \rangle + 4 \langle E_{\nu_x} \rangle) = 3 \times 10^{52}$$

The parameters are initial relative fluxes

$$\phi_{\nu_e}^r = \frac{\phi_{\nu_e}^0}{\phi_{\nu_x}^0} \ , \ \ \phi_{\bar{\nu}_e}^r = \frac{\phi_{\bar{\nu}_e}^0}{\phi_{\nu_x}^0}$$

SN Neutrino Parameters

Three representative models motivated by SN simulations. 2 Garching simulations (G1, G2) and 1 Lawrence Livermore (LL).

Another 'plausible' choice, say 'G3'. Dasgupta et al. PRL (2009)

Fitting Parameters

Model	$\langle E_{\nu_e} \rangle$	$\langle E_{\bar{\nu}_e} \rangle$	$\langle E_{\nu_x} \rangle$	$\zeta_{{ u}_e}$	$\zeta_{ar{ u}_x}$	$\phi_{\nu_e}^r = \frac{\phi_{\nu_e}^0}{\phi_{\nu_x}^0}$	$\phi_{\bar{\nu}_e}^r = \frac{\phi_{\bar{\nu}_e}^0}{\phi_{\nu_x}^0}$
	(MeV)	(MeV)	(MeV)	$=\zeta_{\bar{\nu}_e}$			
LL	12	15	24	3	4	2.00	1.60
G1	12	15	18	3	4	0.80	0.80
G2	12	15	15	3	4	0.50	0.50
G3	12	15	18	3	3	0.85	0.75

Multiple Split Spectra 'G3'

Dasgupta et al. PRL (2009)

-p.20

Luminosity Variation

	$\frac{1}{2} \le \frac{L_{\nu_e}}{L_{\nu_x}} \le 2 \ ; \ \frac{1}{2} \le \frac{L_{\bar{\nu}_e}}{L_{\nu_x}} \le 2$											
$\frac{1}{2}$	$\frac{\langle E_{\nu_x} \rangle}{\langle E_{\nu_e} \rangle}$	$\leq \phi_{\nu_e}^r \leq$	$\leq 2 \frac{\langle E_{\nu_x} \rangle}{\langle E_{\nu_e} \rangle}$; $\frac{1}{2}\frac{\langle E}{\langle E}$	$\left< \frac{\langle \nu_x \rangle}{\langle \bar{\nu}_e \rangle} \le \phi_b^{\prime}$	$\frac{r}{\nu_e} \le 2\frac{\langle J}{\langle J}$	$\frac{E_{\nu_x}\rangle}{E_{\bar{\nu}_e}\rangle} \ .$					
Model	$\langle E_{\nu_e} \rangle$	$\langle E_{\bar{\nu}_e} \rangle$	$\langle E_{\nu_x,\bar{\nu}_x} \rangle$	$\phi^r_{ u_{e;ll}}$	$\phi^r_{ u_{e;ul}}$	$\phi^r_{ar{ u}_{e;ll}}$	$\phi^r_{ar{ u}_{e;ul}}$					
LL	10	15	24	1.20	4.80	0.80	3.2					
G1/G3	12	15	18	0.75	3.00	0.60	2.4					

We Study in the range

$$0.5 \le \phi_{\nu_e}^r \le 5.0$$
; $0.5 \le \phi_{\bar{\nu}_e}^r \le 3.5$.

Spectral Split Regions

Sovan Chakraborty JIGSAW 2010 26 February

- p.22

Spectral Split Patterns (IH)

Sovan Chakraborty JIGSAW 2010 26 February

- p.23

Spectral Split Patterns (NH)

Sovan Chakraborty JIGSAW 2010 26 February

– p.24

r-Process and Collective Effect :

Heavy Neutron (n) rich nuclei (beyond Iron group) are synthesized by rapid neutron capture,

$$n+Y(Z,A-1)\to Y(Z,A)$$

In r-Process ⇒ Rapid process of neutron capture $t(n, \gamma)$ ≪ beta decay life time $(t_β)$.

r-process requires high neutron(n) number density (> $10^{20}cm^{-3}$)

Possible site \Rightarrow " ν driven wind" ahead of "hot bubble" in SN. Sovan Chakraborty JIGSAW 2010 26 February – p.26

Heating by neutrino driven wind coming from neutrino-sphere

$$\nu_e + n \rightleftharpoons e^- + p \; ; \; \bar{\nu}_e + p \leftrightarrows e^+ + n$$

Important quantity whose evolution should be studied is Electron fraction $(Y_e) = \frac{No \ of \ electrons}{No \ of \ Baryons}$

For Neutron rich conditions $Y_e < 0.5$ (Preferably < 0.45).

 This is minimal requirement, other constraint on Entropy, Temparature.

The expression for Y_e involves reaction rates

$$Y_e \simeq \frac{\lambda_{\nu_e n}}{\lambda_{\nu_e n} + \lambda_{\bar{\nu}_e p}} = \frac{1}{1 + \frac{\lambda_{\bar{\nu}_e p}}{\lambda_{\nu_e n}}}$$

Qian et al PRL(1993)

where,

$$\lambda_{\nu N} \simeq \frac{L_{\nu}}{4\pi R_{\nu}^2} \frac{\int dE \ \sigma_{\nu N} \ f_{\nu}(E)}{\int dE \ E \ f_{\nu}(E)}$$

N can be either p or n.

Electronfraction

$$Y_e \simeq \frac{1}{1 + \frac{\lambda_{\bar{\nu}_e p}}{\lambda_{\nu_e n}}}$$

In terms of the initial relative flux $\phi_{\nu_e}^r$ and $\phi_{\bar{\nu}_e}^r$

$$\frac{\lambda_{\bar{\nu}_e p}}{\lambda_{\nu_e n}}(r) = \frac{\int_0^\infty \sigma_{\bar{\nu}_e p}(E) (P_{\bar{\nu}_e}^c(r, E) \phi_{\bar{\nu}_e}^r \Psi_{\bar{\nu}_e}(E) + (1 - P_{\bar{\nu}_e}^c(r, E)) \Psi_{\nu_x}(E)) dE}{\int_0^\infty \sigma_{\nu_e n}(E) (P_{\nu_e}^c(r, E) \phi_{\nu_e}^r \Psi_{\nu_e}(E) + (1 - P_{\nu_e}^c(r, E)) \Psi_{\nu_x}(E)) dE}$$

$$\frac{\lambda_{\bar{\nu}_e p}}{\lambda_{\nu_e n}}(r) = \frac{\int_0^\infty \sigma_{\bar{\nu}_e p}(E) (P_{\bar{\nu}_e}^c(r, E) \phi_{\bar{\nu}_e}^r \Psi_{\bar{\nu}_e}(E) + (1 - P_{\bar{\nu}_e}^c(r, E)) \Psi_{\nu_x}(E)) dE}{\int_0^\infty \sigma_{\nu_e n}(E) (P_{\nu_e}^c(r, E) \phi_{\nu_e}^r \Psi_{\nu_e}(E) + (1 - P_{\nu_e}^c(r, E)) \Psi_{\nu_x}(E)) dE}$$

The cross section used are

$$\sigma_{\nu_e n}(E_{\nu_e}) \approx 9.6 \times 10^{-44} \left(\frac{E_{\nu_e} + \Delta_{np}}{MeV}\right)^2 \text{ cm}^2 ,$$
$$\sigma_{\bar{\nu}_e p}(E_{\bar{\nu}_e}) \approx 9.6 \times 10^{-44} \left(\frac{E_{\bar{\nu}_e} - \Delta_{np}}{MeV}\right)^2 \text{ cm}^2 ,$$

 $\triangle_{np}(1.293 \text{ MeV})$ is mass difference between neutron and proton.

$$rac{\lambda_{ar{
u}_e p}}{\lambda_{
u_e n}} (\eta$$

$$=\frac{\int_{0}^{\infty}\sigma_{\bar{\nu}_{e}p}(E)(P_{\bar{\nu}_{e}}^{c}(r,E)\phi_{\bar{\nu}_{e}}^{r}\Psi_{\bar{\nu}_{e}}(E)+(1-P_{\bar{\nu}_{e}}^{c}(r,E))\Psi_{\nu_{x}}(E))dE}{\int_{0}^{\infty}\sigma_{\nu_{e}n}(E)(P_{\nu_{e}}^{c}(r,E)\phi_{\nu_{e}}^{r}\Psi_{\nu_{e}}(E)+(1-P_{\nu_{e}}^{c}(r,E))\Psi_{\nu_{x}}(E))dE}$$

$$P^c_{\bar{\nu}_e/\nu_e}(r_s, E) = 0$$

$$\frac{\lambda_{\bar{\nu}_e p}}{\lambda_{\nu_e n}}(r) = \frac{\int_0^\infty \sigma_{\bar{\nu}_e p}(E)\Psi_{\nu_x}(E)dE}{\int_0^\infty \sigma_{\nu_e n}(E)\Psi_{\nu_x}(E)dE} ,$$

$$=\frac{\int_{0}^{\infty}\sigma_{\bar{\nu}_{e}p}(E)(P_{\bar{\nu}_{e}}^{c}(r,E)\phi_{\bar{\nu}_{e}}^{r}\Psi_{\bar{\nu}_{e}}(E)+(1-P_{\bar{\nu}_{e}}^{c}(r,E))\Psi_{\nu_{x}}(E))dE}{\int_{0}^{\infty}\sigma_{\nu_{e}n}(E)(P_{\nu_{e}}^{c}(r,E)\phi_{\nu_{e}}^{r}\Psi_{\nu_{e}}(E)+(1-P_{\nu_{e}}^{c}(r,E))\Psi_{\nu_{x}}(E))dE}$$

$$P^c_{\bar{\nu}_e/\nu_e}(r_s, E) = 1$$

$$\frac{\lambda_{\bar{\nu}_e p}}{\lambda_{\nu_e n}}(r) = \frac{\int_0^\infty \sigma_{\bar{\nu}_e p}(E)\phi_{\bar{\nu}_e}^r \Psi_{\bar{\nu}_e}(E)dE}{\int_0^\infty \sigma_{\nu_e n}(E)\phi_{\nu_e}^r \Psi_{\nu_e}(E)dE} ,$$

Y_e Vs Radius

Exclusion Plot $Y_e < 0.45$: NH

Exclusion Plot $Y_e < 0.45$

Conclusion

Different than active-sterile oscillation.

- **IH** the parameter space is more constrained than NH.
- For successful r-process all initial relative fluxes are not allowed.

THANK YOU !