JIGSAW, 22-26 February 2010 Tata Institute of Fundamental Research, Mumbai

Detecting the QCD phase transition using SN neutrinos

:: arXiv: 0912.2568 – with Tobias Fischer, Shunsaku Horiuchi, Matthias Liebendoerfer, Alessandro Mirizzi, Irina Sagert, Jurgen Schaffner-Bielich ::

Basudeb Dasgupta

Max Planck Institute for Physics, Munich

Outline

- Paradigm: Phase transition driven SN explosion
- Model: QCD phase transition at low critical density
- Prediction: Luminosities, Energies
- Testability: Icecube and Super-Kamiokande
- Implications: Possible constraints on the model

Supernova Explosions

Core-Collapse Supernova Mechanisms

Neutrino Mechanism Introduced by:

[Colgate & White '66, Arnett '66, Wilson '85, Bethe & Wilson '85]

Talks by A. Mirizzi and T. Lund at JIGSAW-2010

Magnetorotational Mechanism

[LeBlanc & Wilson '70, Bisnovatyi-Kogan et al. '76, Meier et al. '76, Symbalisty '84]

Acoustic Mechanism

[proposed by Burrows et al. '06, '07; not yet confirmed by other groups/codes]

Magneto-Viscous Mechanism Phase-Transition-Induced Mechanism

[Akiyama et al. '03, Thompson et al. '05]

[Migdal et al. '71, Sagert et al. '09]

This Talk...

Slide by C. Ott at JIGSAW-2010

Core Collapse Timeline

QCD transition driven SN explosions

- Hadrons melt to Quarks
- First order, with Latent Heat emitted
- Mixed phase with bubbles/nucleation
- QCD phase transition in SN at early times if the critical density is low

 Sagert et al., arXiv:0809.4225
- Emitted energy produces a 2nd shock
- Shock goes through already deleptonized matter
- Produces loads of anti- v_e and explosion!

Model Parameters

- Quark/Hadron Matter = MIT bag
- 3 parameters: B, m_s , α_s
- B = 162 MeV; should be 145-200 MeV
- EOS (Shen) gives $n_{crit}=0.12 \text{ fm}^{-3}$

Sagert et al., arXiv:0809.4225

- Typical times for nucleation = 100 ms
- Onset-End of mixed phase
- Happens at core bounce

Simulation: Technical Caveats

- Sophistication:
 - Spherically Symmetric

C. Cardall, Slide at JIGSAW-2010

- EOS:
 - Nucleation Time

Mintz et al., arXiv:0910.3927

Phases could be more complicated

Constraints on this model

- Neutron Star mass measurements:
 - ightharpoonup Model predicts 1.5 M $_{\odot}$ in the observed range
 - Can be somewhat larger with more complicated EOS
- RHIC:
 - Critical density low...but RHIC constraint doesn't apply
 - Isospin is very different! This is neutron rich matter
- Strange quark stars:
 - ► This model doesn't allow absolutely stable strange quark matter

Predicted Neutrino Fluxes

Predicted Neutrino Fluxes

Icecube Detector Response

Icecube with 4800 DOMs

Talks by T. Griesel and T. Kowarik at JIGSAW-2010

- Signal = correlated increase of "noise"
- Only calorimetric info. No spectral info
- Photon Count Rate

Halzen and Raffelt, arXiv:0908.2317

$$R_{\bar{\nu}_e} = 1860 \text{ bin}^{-1} L_{53} d_{10}^{-2} \langle E_{15}^3 \rangle / \langle E_{15} \rangle^3$$

Neutrino Flux*Cross-section*Energy deposited

Time-binning of 2 ms/bin...more on that soon!

Signal at Icecube

Signal at Icecube

Sub-sampling at Icecube?

 Signal can be huge. How about treating each string as a separate detector? Staggered in time...

Thanks for discussions: Beacom and Halzen

Sub-sampling at Icecube?

Signal can be huge. How about treating each string as a

Signal at Super-Kamiokande

What could we learn?

Implications

- Detection of SN
- Some phase transition/quick release of energy
- Early transition, and with large release of energy
- Constraints between ϵ , κ , c_s at Hadron/Quark matter phase transition
- We can constrain these models or falsify them (Or could some other phase transition also mimic this signal ???)

Thanks!!!