JIGSAW, 22-26 February 2010 Tata Institute of Fundamental Research, Mumbai

Multiple Spectral Splits of Supernova Neutrinos

:: arXiv: 0904.3542 – with Dighe, Raffelt, Smirnov ::
:: arXiv: 0904.3542 – with Mirizzi, Tamborra, Tomas ::
:: in progress – with Choubey, Dighe, Mirizzi ::

Basudeb Dasgupta Max Planck Institute for Physics, Munich

Outline

- Inverse SN neutrino problem
- A new layer of difficulty: Collective Oscillations
- A new player: Flux Models
- Rich (Complicated) phenomenology: Spectral Splits
- What should we look for? What could we learn?

Neutrino Oscillations in SN

- Neutrino oscillation usually involves only 2 terms
 - Mass matrix / 2E
 - MSW potential (due to electrons)
- In a SN, neutrinos are very dense and therefore create a similar MSW-like potential.
 - Flavor non-trivial.
 - Coupled neutrino oscillations a.k.a "Collective Effects".
- Neutrino flavor spectra swap in some energy ranges.
- These are called "Collective Effects".

The SN neutrino program

- Calculate an initial neutrino spectrum
- Calculate the changed spectrum due to oscillation effects
- Calculate flux at detector
- Construct variables that distinguish different physics/astro scenarios
- Wait for a SN...

SN collective effects: Summary (old)

For IH:

- **Exchange** v_e and v_y above E_c .
- \blacktriangleright Exchange anti- $\nu_{\rm e}$ and anti- $\nu_{\rm y}$.

For NH:

No collective effects.

Seminal papers by: Duan, Fuller, Carlson, and Qian (2005, 2006) **Almost 100 papers on collective effects by:**

Abazajian, Balantekin, Beacom, Bell, Blennow, Carlson, Dasgupta, Dighe, Dolgov, Duan, Esteban-Pretel, Fogli, Friedland, Fuller, Gava, Goswami, Hannestad, Hansen, Kneller, Kostelecky, Lisi, Lunardini, Marrone, McLaughlin, Mirizzi, Pantaleone, Pastor, Pehlivan, Qian, Raffelt, Samuel, Serpico, Semikoz, Sigl, Smirnov, Stodolsky, Tomas, Volpe, Wong

SN neutrinos and the spectral split

 We get a spectral split in neutrinos, and the antineutrinos swap their energy spectra between flavors.

Fogli, Lisi, Marrone, Mirizzi (2007)

Actually there is a split in antineutrinos too...

SN Simulations: Garching 2003

Spectra

- Almost thermal
- Pinching

Luminosity

- Burst of v_e
- Crossover
- Cooling

Average Energies

• $E_e < E_{ebar} < E_x$

Garching group, astro-ph/0303226

Slightly different fluxes

- What happens if initial fluxes are changed a bit?
- Let's check out the case of the spectra predicted by Garching group for the cooling phase.
- The essential change : neutrino number fluxes are taken to be $v_e:v_{ebar}:v_x=0.85:0.75:1.00$ and not equipartitioned, as was commonly assumed.

Many spectral splits

- 4 splits in IH.
- 2 splits in NH.
- Why?

Clearly there is something missing in our understanding.

This could be observationally important...

Part I: How to predict the final spectra, given the initial spectra.

Notation

- We have the flux spectrum f(E) for each flavor.
- However, let's use $\omega = \Delta m^2/2E$ as the x-axis variable.
- Moreover, let's label antineutrinos with $-\omega$.
- Define

$$g(\omega) = \begin{cases} f_e(E) - f_x(E) \text{ for neutrinos} \\ f_x(E) - f_e(E) \text{ for antineutrinos} \end{cases}$$

- Now we have put the all the relevant spectral information in a single function $g(\omega)$.
- How does this function look? Let's see…

In the $g(\omega)$ variable...

- $g(\omega)=0$ where fluxes equal
- "Swaps" around every "± crossing"
- Each swap flanked by two "splits"
- Splits not always washed out completely by multi-angle effects
- Let's answer some questions now...
 - Why are there swaps around a crossing?
 - Why the ± for IH/NH?
 - What is the width of the swap?

Fixed initial neutrino density μ

- "Box" spectrum at finite μ.
- Spectrum oscillates to the dotted lines and back.
- Swap function looks like a Lorentzian centered at the crossing at any instant!
 - Collective motion.
 - May be we can solve this analytically?
 - ▶ Let's try...

"Deriving" the Lorentzian

The system has EOM

$$\dot{\mathbf{P}}_{\omega} = (\omega \mathbf{B} + \lambda \mathbf{L} + \mu \int d\omega_1 \, \mathbf{P}_{\omega_1}) \times \mathbf{P}_{\omega}$$

• Ansatz:

$$\mathbf{P}_{\omega}(t) = \begin{pmatrix} -\sin\varphi L(\omega) \\ -\frac{\omega}{\Gamma} 2\sqrt{1 - \cos\varphi} L(\omega) \\ 1 - (1 - \cos\varphi) L(\omega) \end{pmatrix} g(\omega) \qquad \qquad \varphi = \Gamma \sqrt{2(1 - \cos\varphi)} \frac{1}{\sqrt{-1 + e^{2\delta/\mu}}}$$

$$L(\omega) = \frac{\Gamma^2}{\Gamma^2 + \omega^2}$$

 This is a merely a parametrization, and putting it back in EOMs we get

$$\dot{\varphi} = \Gamma \sqrt{2(1 - \cos \varphi)}$$

$$\Gamma = \frac{\delta}{\sqrt{-1 + e^{2\delta/\mu}}}$$

- EOM of a pendulum.
- Width is exponential in μ .

Changing neutrino density µ

- We know that as we decrease μ (mimicking decreasing neutrino density away from the core) the pendulum damps and relaxes to lowest energy configuration.
- This system involves an adiabatic invariant that roughly relates the width of split ω_s to width of Lorentzian Γ .

$$\omega_{s} = \frac{\pi}{4} \Gamma \frac{2}{1 + \sqrt{1 + \frac{\pi^{2} \mu}{4 2\delta}}} = \frac{\delta}{\sqrt{-1 + e^{2\delta/\mu}}} \frac{\pi/2}{1 + \sqrt{1 + \frac{\pi^{2} \mu}{4 2\delta}}}$$

Some comments

- We showed that there is a pendulum like oscillation about a crossing.
- As μ decreases, this pendulum eventually tips over if it is inverted, i.e. +ive crossings for IH, -ive crossings for NH.
- Thus there are swaps around a crossing (B.P conserved).
- Width of the swap is related to Γ and depends on initial μ : wider swaps for larger initial μ . Exponentially thin swaps for small. Also depends on δ , i.e. box width.

Analogy to Spin Magnetic Resonance

 We break the collective magnetic field into a parallel and perpendicular component, drop the former.

$$\dot{\mathbf{P}}_{\omega} = (\omega \mathbf{B} + \mu \int d\omega_1 \, \mathbf{P}_{\omega_1}^{\parallel} + \mu \int d\omega_1 \, \mathbf{P}_{\omega_1}^{\perp}) \times \mathbf{P}_{\omega}$$

- For ω =0, P is on-resonance (the mode has the same frequency as the transverse magnetic field)!
- Others are slightly off-resonance by ω , and their amplitude falls off as a Lorentzian, as in SMR.

But that's still only two splits ...

• What happens if two copies of the box are put far apart in ω -space?

 Each box acts like an independent pendulum; the transverse field due to the other is averaged to zero.

$$\dot{\mathbf{P}}_{\omega} = (\omega \mathbf{B} + \mu \int d\omega_1 \, \mathbf{P}_{\omega_1} + \mu \int d\omega_2 \, \mathbf{P}_{\omega_2}) \times \mathbf{P}_{\omega}$$

What happens when they are close

• What happens if two "boxes" are put close together in the ω -space

 The inner block acts like a superimposed oscillator on the bigger one. The inner swap-width is exponentially small.

What's special about the box?

- Short answer: Nothing!
- Long answer: Although any function around the crossing works fine, doing the integrals is harder/impossible. Also, the uniqueness and stability of the solution is not guaranteed.

Great expectations

The basic picture ...

- \triangleright One swap for every \pm crossing for IH/NH.
- > Width of each swap depends exponentially on μ and also on the δ for the block around that crossing.
- ► Each swap approx. preserves lepton number B.P locally.
- When blocks are close more complicated things can happen, and it would be interesting to study...

Cooling phase fluxes: Recap

- Swaps around every "± crossing"
- Each swap flanked by two splits
- Splits not always washed out completely by multi-angle effects

- We have answered the questions...
 - Why are there swaps around a crossing?
 - Why the ± for IH/NH?
 - What is the width of the swap?

Accretion phase example: Recap

- We should have seen 4
 splits, but we see 2 only,
 because the inner swap is exponentially narrower.
- In fact even in NH we should get two splits (but again they are narrow and the flux is low at low- |ω| to see anything).

Odds and Ends

- Three-flavor effects?
- Do a survey of various SN flux models and check what kind of split patterns one gets.
- Is there a simple picture to this?
- Can one show that this will/won't have experimental relevance?

Part II: Three Flavor Effects

Three-flavor effects

Alexander Friedland, arXiv:1001:0996

Solar Δm^2 driven effects

- Usually not adiabatic, i.e.
 - ► $ω=Δm^2/E ≈ Γ$ (pendulum frequency) less than rate at which μ is decreasing.
- Some initial disturbance helps to kick-start swaps.

Try anything twice

• g(ω) is processed twice

- Step 1: by atmospheric ∆m² (NH/IH)
- Step 2: by solar Δm^2
- Interplay of these two steps
 - NH: cooperate
 - ▶ IH: compete with each other
- Step 1 gives required disturbance.

Inverted Hierarchy

- Atmospheric swaps (e,y)
- Solar swaps (e,x)
- Higher energy split is transferred from e to x
- Non-adiabatic effects
- In short: It's a mess! But a mess that we understand!

Normal Hierarchy

- Almost same as 2-flavors.
- Solar driven conversions are too slow to compete.

- Simple prediction
 - High energy spectrum of e and y flavors are swapped.
- Let's get a bit more ambitious...

Part III: Survey of Flux Models and Pattern Hunting

Ternary Diagrams

- Luminosity of 3 species
- Typically L_e=L_ebar

A pattern of splits

Fogli, Lisi, Marrone, Tamborra, arXiv:0907.5115

Flux Models: Garching 2003

• Luminosity:

Average Energy:

Flux Models: Basel 2009

• Luminosity:

Average Energy:

Basel group, arXiv:0908.1871

Split Patterns in NH and IH

- A given model at time, is a point on this plane
 - ► Include MSW effects, vacuum mixing, Earth matter effects...
 - Look at v_e and anti- v_e spectra at various detectors...
 - See if there are some simple ways to extract NH/IH or SN physics...

NH/IH determination

 Look at the early signal (< 1 sec) in antineutrinos using ratio of events at two WC detectors.

Dasgupta, Dighe, Mirizzi, arXiv:0802.1481

Hierarchy+Shock-wave effects

More complicated time-dependent signatures

Conclusions

- Rich phenomenology...important to remember that we will have a time-dependent signal.
- Collective effects can be very different over these times.
- Theory still not complete...but in good shape.
- Lots to do...