STUDY OF X(3872) AND X(3915)

Ashish Thampi

December 4, 2016

Motivation

- By 1960s hundreds of particles were known and considered them to be distinct elementary particles.
- In 1964 Gell-Mann and Zweig independently developed quark model and explained it as the fundamental elementary particles[Phys.Lett. 8(1964)].
- All the hadrons we observed were either mesons [q $\bar{q}]$ or baryons [qqq].
- In the last decade, states which does not fit into this conventional model have been observed. In 2003 Belle observed $X(3872)$ as a narrow peak in the $J / \psi \pi^{+} \pi^{-}$invariant mass in $B^{+} \rightarrow J / \psi \pi^{+} \pi^{-} K^{+}$ decay[PhysRevLett.91.262001(2003)].

Motivation

- X(3872) decayed as ψ^{\prime}.
- Is it just a charmonium?
- Its mass is very close to the $D^{0} D^{* 0}$ threshold. No $c \bar{c}$ is expected to be of this mass.
- Theoretical predictions for the nature of $X(3872)$ are
- Charmonium hybrid state
- $D^{0} D^{* 0}$ molecule
- Tetraquark
- Admixture of charmonium and $D^{0} D^{\bar{*} 0}$ molecule
$X(3872) \rightarrow J / \psi \omega$ was first seen in $B \rightarrow(J / \psi \omega) K$ by Belle [arXiv:hep-ex/0505037] and later confirmed by BaBar[arXiv:1005.5190]. This decay mode is crucial in understanding the nature of $X(3872)$. We are performing this study with the full Belle $\Upsilon(4 S)$ data (which is almost twice of BaBar).
Further $X(3915) \rightarrow J / \psi \omega$ can also be studied along with $X(3872)$ [arXiv:1207.2651].

Reconstruction

- Generated 1 million events for
- $B \rightarrow J / \psi \omega K$
- $B \rightarrow X(3872) K$
- $B \rightarrow X(3915) K$
- Reconstruction of B is done from $l^{+}, l^{-}, \pi^{+}, \pi^{-}, \gamma, \gamma, \mathrm{K}$.
- $B \rightarrow J / \psi \omega K$ and $J / \psi \rightarrow l^{+} l^{-}, \omega \rightarrow \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \rightarrow \gamma \gamma$.
- Cuts and criterions
- $R_{2}<0.5$
- $|d r|<1.0 \mathrm{~cm}$
- $|d z|<3.5 \mathrm{~cm}$
- Kid >0.6
- $\pi i d>0.6$

DZ AND DR

- dr and dz

(a) $-1.0 \mathrm{~cm}<\mathrm{dr}<1.0 \mathrm{~cm}$

(b) $-3.5 \mathrm{~cm}<\mathrm{dz}<3.5 \mathrm{~cm}$
- π / K selection

Tracks with $R_{\pi}>0.6$ are identified as π candidates. Tracks with $R_{K}>0.6$ are selected as K candidates

(c) R_{π}
(d) R_{K}

B CANDIDATE IDENTIFICATION

- Energy difference

$$
\begin{equation*}
\Delta E=E_{\text {beam }}-E_{B} \tag{1}
\end{equation*}
$$

At $\Upsilon(4 S), B \bar{B}$ mesons are produced with no accompanying particles. So each B meson has a total CMS energy equals to $E_{\text {beam }}$.

- Beam constrained mass, $M_{b c}$

We identify B meson using the beam constrained mass

$$
\begin{equation*}
M_{\mathrm{bc}}=\sqrt{E^{2}{ }_{\text {beam }}-p_{B}^{2}} \tag{2}
\end{equation*}
$$

- Best candidate selection

We expect one B candidate of interest per event. However due to fake combinations, we are getting multiple candidates. In case of multiple candidates, we select the best candidate having the $M_{b c}$ closest to the nominal B mass ($5.279 \mathrm{GeV} / \mathrm{c}^{2}$)

M_{bc} AND $\triangle E$

(e) $B \rightarrow J / \psi \omega K$

(h) $B \rightarrow J / \psi \omega K$

(f) $B \rightarrow X(3872) K$

(i) $B \rightarrow X(3872) K$

(g) $B \rightarrow X(3915) K$

(j) $B \rightarrow X(3915) K$

INVARIANT MASS DISTRIBUTION $\left(M_{J / \psi \omega}\right)$

Figure: $B^{ \pm} \rightarrow J / \psi \omega K^{ \pm}$

(a) $B^{ \pm} \rightarrow X(3872)[\rightarrow J / \psi \omega] K^{ \pm}$

(b) $B^{ \pm} \rightarrow X(3915)[\rightarrow J / \psi \omega] K^{ \pm}$

J / ψ INCLUSIVE MC

- In order to understand the background, we use $B \rightarrow J / \psi X$ inclusive $M C$. - This MC includes all the known B decay modes where the final states contains at least one J / ψ candidate.
- We expect the non- J / ψ background to be very less.
- Luminosity of $B \rightarrow J / \psi X$ inclusive $M C$ is 100 times the real data.
- We run our reconstruction code and tagged all the possible background modes.
- Following modes are found to be the major background sources .

SUMMARY

SUMMARY

- Learned about Belle detector and BASF
- Generated 1 Million signal events for
- $B^{ \pm} \rightarrow J / \psi \omega K^{ \pm}$
- $B^{ \pm} \rightarrow X(3872)[\rightarrow J / \psi \omega] K^{ \pm}$
- $B^{ \pm} \rightarrow X(3915)[\rightarrow J / \psi \omega] K^{ \pm}$
- Reconstruction module is prepared and basic cuts and criterions are applied
- Background study is done and potential backgrounds are identified
- To Do
- Optimize cuts and criterions
- Reduce background to improve the Signal to Noise ratio
- Signal extraction procedure to be prepared
- Test the procedure for any bias

Reference

[1] A Schematic Model of Baryons and Mesons. Murray Gell-Mann, Phys.Lett. 8 (1964).

- [2] Observation of a Narrow Charmoniumlike State in Exclusive $B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-} J / \psi$ Decays, S.-K. Choi, S. L. Olsen et al, PhysRevLett.91.262001 (2003).
[3] Evidence for $X(3872) \rightarrow \gamma J / \psi$ and the sub-threshold decay $X(3872) \rightarrow \omega J / \psi$. K. Abe, et al., for the Belle Collaboration, arXiv:hep-ex/0505037 (2005).
- [4] Evidence for the decay $X(3872) \rightarrow J / \psi \omega$. P. del Amo Sanchez et al. (BABAR Collaboration), arXiv:1005.5190 (2010).
- [5] Study of $X(3915) \rightarrow J / \psi \omega$ in two-photon collisions, The BABAR Collaboration, arXiv:1207.2651 (2012).

