STUDY OF X(3872) AND X(3915)

Ashish Thampi

December 4, 2016

- By 1960s hundreds of particles were known and considered them to be distinct elementary particles.
- In 1964 Gell-Mann and Zweig independently developed quark model and explained it as the fundamental elementary particles[Phys.Lett. 8(1964)].
- · All the hadrons we observed were either mesons $[q\bar{q}]$ or baryons [qqq].
- In the last decade, states which does not fit into this conventional model have been observed. In 2003 Belle observed X(3872) as a narrow peak in the $J/\psi\pi^+\pi^-$ invariant mass in $B^+ \to J/\psi\pi^+\pi^-K^+$

decay[PhysRevLett.91.262001(2003)].

- \cdot X(3872) decayed as ψ' .
 - $\cdot \,$ Is it just a charmonium?
- · Its mass is very close to the $D^0 \overline{D^{*0}}$ threshold. No $c\overline{c}$ is expected to be of this mass.
- \cdot Theoretical predictions for the nature of X(3872) are
 - · Charmonium hybrid state
 - $\cdot D^0 \overline{D^{*0}}$ molecule
 - · Tetraquark
 - · Admixture of charmonium and $D^0 \overline{D^{*0}}$ molecule

 $X(3872) \rightarrow J/\psi\omega$ was first seen in $B \rightarrow (J/\psi\omega)K$ by Belle [arXiv:hep-ex/0505037] and later confirmed by BaBar[arXiv:1005.5190]. This decay mode is crucial in understanding the nature of X(3872). We are performing this study with the full Belle $\Upsilon(4S)$ data (which is almost twice of BaBar). Further $X(3915) \rightarrow J/\psi\omega$ can also be studied along with X(3872) [arXiv:1207.2651].

- · Generated 1 million events for
 - $\cdot ~B \to J/\psi \omega K$
 - · $B \rightarrow X(3872)K$
 - · $B \rightarrow X(3915)K$
- $\cdot\,$ Reconstruction of B is done from $l^+, l^-, \pi^+, \pi^-, \gamma, \gamma, {\it K}.$
 - $\cdot B \rightarrow J/\psi \omega K \text{ and } J/\psi \rightarrow l^+l^-, \omega \rightarrow \pi^+\pi^-\pi^0, \pi^0 \rightarrow \gamma \gamma.$
- $\cdot\,$ Cuts and criterions
 - $\cdot R_2 < 0.5$
 - $\cdot |dr| < 1.0 cm$
 - $\cdot |dz| < 3.5 cm$
 - \cdot Kid > 0.6
 - $\cdot \pi id > 0.6$

 $\cdot\,$ dr and dz

 $\cdot \pi/K$ selection

Tracks with $R_{\pi} > 0.6$ are identified as π candidates. Tracks with $R_{K} > 0.6$ are selected as *K* candidates

Energy difference

$$\Delta E = E_{beam} - E_B \tag{1}$$

At $\Upsilon(4S)$, $B\overline{B}$ mesons are produced with no accompanying particles. So each *B* meson has a total CMS energy equals to E_{beam} .

Beam constrained mass, M_{bc}
We identify B meson using the beam constrained mass

$$M_{\rm bc} = \sqrt{E^2_{beam} - p^2_B} \tag{2}$$

· Best candidate selection

We expect one *B* candidate of interest per event. However due to fake combinations, we are getting multiple candidates. In case of multiple candidates, we select the best candidate having the $M_{\rm bc}$ closest to the nominal *B* mass (5.279 GeV/ c^2)

Figure: $B^{\pm} \rightarrow J/\psi \omega K^{\pm}$

- · In order to understand the background, we use $B \rightarrow J/\psi X$ inclusive MC.
- This MC includes all the known B decay modes where the final states contains at least one J/ψ candidate.
 - \cdot We expect the non-J/ ψ background to be very less.
- · Luminosity of $B \rightarrow J/\psi X$ inclusive MC is 100 times the real data.
- $\cdot\,$ We run our reconstruction code and tagged all the possible background modes.
- $\cdot\,$ Following modes are found to be the major background sources .

SUMMARY

- $\cdot\,$ Learned about Belle detector and BASF
- $\cdot\,$ Generated 1 Million signal events for
 - $\cdot ~B^{\pm} \rightarrow J/\psi \omega K^{\pm}$
 - $\cdot B^{\pm} \rightarrow X(3872) [\rightarrow J/\psi\omega] K^{\pm}$
 - $\cdot B^{\pm} \rightarrow X(3915)[\rightarrow J/\psi\omega]K^{\pm}$
- Reconstruction module is prepared and basic cuts and criterions are applied
- $\cdot\,$ Background study is done and potential backgrounds are identified
- · To Do
 - $\cdot \,$ Optimize cuts and criterions
 - $\cdot\,$ Reduce background to improve the Signal to Noise ratio
 - $\cdot\,$ Signal extraction procedure to be prepared
 - $\cdot\,$ Test the procedure for any bias

- [1] A Schematic Model of Baryons and Mesons. Murray Gell-Mann, Phys.Lett. 8 (1964).
- [2] Observation of a Narrow Charmoniumlike State in Exclusive $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}J/\psi$ Decays, S.-K. Choi, S. L. Olsen et al, PhysRevLett.91.262001 (2003).
- [3] Evidence for $X(3872) \rightarrow \gamma J/\psi$ and the sub-threshold decay $X(3872) \rightarrow \omega J/\psi$. K. Abe, et al., for the Belle Collaboration, arXiv:hep-ex/0505037 (2005).
- [4] Evidence for the decay $X(3872) \rightarrow J/\psi\omega$. P. del Amo Sanchez et al. (BABAR Collaboration), arXiv:1005.5190 (2010).
- [5] Study of $X(3915) \rightarrow J/\psi\omega$ in two-photon collisions, The BABAR Collaboration, arXiv:1207.2651 (2012).