MIXING AND CPVIOLATION IN D DECAYS

Seema Bahinipati IIT Bhubaneswar

Post-CKM school, December 2, 2016

OUTLINE

- Motivation
- Charm Mixing & CPV
- Mixing Results
- Direct CPV in K+K-
- Time-integrated CPV in D0 to π+π-, K+K-, D0 to KsKs
- New flavour tagging technique at Belle II
- Outlook and Summary

WHY CHARM IS CHARMING ?

- Charm is an up-type quark: charm physics is an interesting area of flavour physics: complementary to bottom and strange, but different from top
- Charm is neither too heavy nor too light: ideal situation for interesting QCD physics
- Charm physics offers unique test bed for New Physics

WHY CHARM PHYSICS?

In SM, FCNC's are suppressed by GIM mechanism

$$\text{GIM} \propto \frac{1}{16\pi^2} \frac{m_t^2 - m_u^2}{M_W^2}$$

bottom and strange: GIM is weakened due to large top mass

$$\mathrm{GIM} \propto \frac{1}{16\pi^2} \frac{m_b^2 - m_d^2}{M_W^2}$$

charm and top: GIM is much more efficient ($m_b < m_t$)

 $\left(\frac{NP \text{ Signal}}{SM \text{ noise}}\right)_{up-type} > \left(\frac{NP \text{ Signal}}{SM \text{ noise}}\right)_{down-type}$ Cleaner signals of NP

CHARM MIXING

D0 can mix with D0-bar and vice-versa

 $M_{1,2} = |D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle \qquad |p|^2 + |q|^2 = 1$ Two mass eigenstates

$$x = \frac{m_1 - m_2}{\Gamma} \quad y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma} \quad \text{with} \quad \Gamma = \frac{1}{2} \left(\Gamma_1 + \Gamma_2\right) \quad \text{Mixing parameters}$$

→ Let's consider the state of a neutral charmed meson that was a D^0 at t = 0:

 The probability that the flavour is changed at time t is:

 $|\langle \overline{D}^0 | D^0(t) \rangle|^2 \propto e^{-\Gamma t} \left[\cosh(y \Gamma t) - \cos(x \Gamma t) \right]$

 The probability that the flavour is not changed at time t is:

$$|\langle D^0|D^0(t)\rangle|^2 \propto e^{-\Gamma t} \left[\cosh(y\Gamma t) + \cos(x\Gamma t)\right]$$

CHARM MIXING STATUS

D⁰ mixing firmly established experimentally, though with still relatively large errors for x

DO SYSTEM

- Only heavy, neutral up-type system unique test bed for CPV
- In SM, CPV in charm is highly suppressed

$$\begin{split} V_{CKM} &= \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \\ &= \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4), \\ \lambda &\simeq 0.23, \quad A \simeq 0.81, \quad \rho - i\eta \simeq 0.14 - 0.35i. \end{split}$$

CPV IN CHARM

- SM picture: Expected CPV in charm sector is small
- Couplings to the third generation is small: Effectively "twofamily" physics
- Presence of weak phases in CS decays, not in CA and DCS decays

The direct CPV

CPV in decay occurs when the absolute value of the decay rate $M \rightarrow f$ differs from the decay rate involving the CP-conjugate states

$$|A(M^0 \to f)| \neq \left|A\left(\overline{M}{}^0 \to \overline{f}\right)\right|$$

$$\frac{M^{0}}{f} \neq \frac{\bar{M}^{0}}{f}$$

CPV can happens if the final state can be reached at least with two different path

The amplitude of a CP eingenstate, i.e. $D^0 \rightarrow f$ with $f = K^-K^+$ or $f = \pi^-\pi^+$, it can be written with a leading term and a sub-leading as follows

Sub-leading amplitude: with relative strong (δ_f) and weak (ϕ_f) phases

$$A_f = A_f^T \left(1 + r_f e^{i(\delta_f + \phi_f)} \right)$$

Leading amplitude: its phase is taken to be zero

The direct CPV

Grossman, Kagan, Nir Phys.Rev.D75 Guadagnoli@FPLH

CP violation in the decay can be observed if the asymmetry

$$A_{CP}^{dir}(D^0 \to f) = \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 + |\bar{A}_{\bar{f}}|^2}$$

is different from zero

In the limit where $r_f \ll 1$ (which is a good approximation)

$$A_{CP}^{dir}(D^0 \to f) = -2r_f \sin \delta_f \sin \phi_f$$

Necessary condition to observe direct CP violation is that r_f , δ_f and ϕ_f are all different from zero

Angelo Carbone

SCS DECAYS

Singly Cabibbo Suppressed (SCS) decay, e.g. $D^0 \rightarrow K^-K^+$

Penguin amplitude

Of Special interest:

possible interference with NP amplitude could lead to larger nonzero CPV

DCPV

Defining

$$\begin{split} A_f &= \langle f | \mathcal{H} | \mathbf{D}^0 \rangle, & A_{\bar{f}} &= \langle \bar{f} | \mathcal{H} | \mathbf{D}^0 \rangle, \\ \bar{A}_f &= \langle f | \mathcal{H} | \overline{\mathbf{D}}^0 \rangle, & \bar{A}_{\bar{f}} &= \langle \bar{f} | \mathcal{H} | \overline{\mathbf{D}}^0 \rangle, \end{split}$$

direct CP violation is quantified by

$$A_{CP}^{dir} \equiv rac{|A_f|^2 - |ar{A}_{ar{f}}|^2}{|A_f|^2 + |ar{A}_{ar{f}}|^2}.$$

The Standard Model (SM) predicts direct *CP* violation in D⁰ decays to be $\mathcal{O}(10^{-3})$ in $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ ^[6].

The single asymmetry $A_{CP}(KK)$

In order to measure the single asymmetry it is necessary to know the pion detection asymmetry $A_D(\pi_s^+)$ and the D^{*+} production asymmetry $A_P(D^{*+})$

 $A_{raw}(KK) = A_{CP}(KK) + A_P(D^{*+}) + A_D(\pi_s^+)$

The raw asymmetry for $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$, $A_D(\pi_s^+)$ cancel

 $A_{raw}^{*}(K\pi) = A_{CP}(K\pi) + A_{D}(K\pi) + A_{P}(D^{*+}) + A_{D}(\pi_{s}^{+})$

In the difference between the two A_{raw} , $A_P(D^{*+})$ and $A_D(K\pi)$ cancel

$$A_{raw}(KK) - A^*_{raw}(K\pi) = A_{CP}(KK) - A_D(K\pi)$$

It is still necessary to measure $A_D(K\pi)$

Angelo Carbone

The single asymmetry $A_{CP}(KK)$

$$A_{CP}(K^-K^+) = (0.14 \pm 0.15 \,(\text{stat}) \pm 0.10 \,(\text{syst}))\%$$

Category	Systematic uncertainty[%]	
Determination of raw asymmetries:		
Fit model	0.025	
Peaking background	0.015	
Cancellation of nuisance asymmetries:		
Additional fiducial cuts	0.040	
Weighting configuration	0.062	
Weighting simulation	0.054	
Secondary charm meson	0.039	
Neutral kaon asymmetry	0.014	
Total	0.10	

This result can be combined with the previous LHCb measurement based on a data sample of $D^0 \rightarrow K^-K^+$ decays from semi-leptonic *B* decays

$$A_{CP}^{\rm sl}(K^-K^+) = (-0.06 \pm 0.15 \,(\text{stat}) \pm 0.10 \,(\text{syst}))\%$$

$$LHCb-PAPER-2013-054 \,\text{Phys. Rev. Lett. 112 (2014)}$$

$$A_{CP}^{\rm comb}(K^-K^+) = (0.04 \pm 0.12 \,(\text{stat}) \pm 0.10 \,(\text{syst}))\%.$$

Angelo Carbone

Combination with previous LHCb measurements

LHCb-PAPER-2015-035, Submited to PLB

From the previous ΔA_{CP} mesurement, is possible to measure $A_{CP}(\pi\pi)$

 $A_{CP}(\pi^{+}\pi^{-}) = A_{CP}(K^{+}K^{-}) - \Delta A_{CP} = (0.24 \pm 0.15 \,(\text{stat}) \pm 0.11 \,(\text{syst}))\%$

with a correlation between the two mesurements $\rho(A_{CP}(KK), A_{CP}(\pi\pi)) = 0.24$

This result can be combined with the previous LHCb measurement based on a data sample of $D^0 \rightarrow \pi^- \pi^+$ decays from semi-leptonic *B* decays

Angelo Carbone

Time-integrated CP asymmetry

CP asymmetry is defined as

$$A_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(D^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)}$$

with $f=K^{-}K^{+}$ and $f=\pi^{-}\pi^{+}$

The flavour of the initial state (D^o or \overline{D}^o) is tagged by the charge of the slow pion from, $D^{*\pm} \rightarrow D^o \pi^{\pm}$

The raw asymmetry for tagged D^o decays to a final state f is given by

$$A_{raw}(f) = \frac{N(D^{*+} \to D^0 \pi^+) - N(D^{*-} \to \overline{D}^0 \pi^-)}{N(D^{*+} \to D^0 \pi^+) + N(D^{*-} \to \overline{D}^0 \pi^-)}$$

where N refers to the number of reconstructed events of decay after background subtraction

Angelo Carbone

Production and detection asymmetries

What we measure is the physical asymmetry plus asymmetries due to production and detector effects

$$A_{\text{raw}}(f) = A_{CP}(f) + A_D (\mathcal{A}_D) + A_D (\pi_s^+) + A_P(D^{*+})$$

Any charge-dependent asymmetry in slow pion reconstruction

• No detection asymmetry for D^o decays to K⁻K⁺ or $\pi^-\pi^+$

... if we take the raw asymmetry difference

CP asymmetry

$$\Delta A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

 the D*+ production and the slow pion detection asymmetries will cancel

Angelo Carbone

Measurement of the difference of timeintegrated CP asymmetry in $D^0 \rightarrow K^-K^+$ and $D^0 \rightarrow \pi^- \pi^+$ decay LHCb-PAPER-2015-055

Phys. Rev. Lett. 116 (2016) 191601

Signal yields

LHCb-PAPER-2015-055, PRL 116 (2016) 191601

 $\Delta A_{CP} = (-0.10 \pm 0.08 \text{ (stat)} \pm 0.03 \text{ (syst)})\%$

This is the most precise measurement of a time-integrated CP asymmetry in the charm sector from a single experiment.

In agreement with the LHCb muon-tagged measurement: Run-1 3/fb

 $\Delta A_{CP} = 0.14 \pm 0.16^{\text{stat}} \pm 0.08^{\text{syst}}$ %

LHCb-PAPER-2014-069 JHEP 04 (2015) 043

Angelo Carbone

19

Results

LHCb-PAPER-2015-055, PRL 116 (2016) 191601

The observable ΔA_{CP} is mostly sensitive to direct CP asymmetry, $\Delta a^{dir}{}_{CP}$, but with a small contribution also to indirect CP asymmetry, $a^{ind}{}_{CP}$

Combination with LHCb measurements

 $\Delta a_{CP}^{dir}(-0.061 \pm 0.076)\%$ $a_{CP}^{ind}(0.058 \pm 0.044)\%$

The result is consistent with the hypothesis of CP symmetry with a p-value of 0.32

CPV IN CHARM

Neutral D mixing opens up additional avenues for CPV in charm

1 + 1

$$\mathcal{A}_{CP}(t) = [x \sin \phi_{CP} + y \epsilon_{CP} \cos \phi_{CP}] \left(\frac{t}{\tau}\right)$$

• ϕ_{CP} : Weak Phase in $D^0 - \overline{D}^0$ mixing

• ϵ_{CP} : Corresponds to the ϵ parameter for the Kaons

• In the SM: $x, y \sim 1\%$ and $\sin \phi_{CP}, \epsilon_{CP} \leq 10^{-3}$

CPV in charm could be indication of NP: $A_{CP}(t) \sim 10^{-3}$ in some NP models

Final state distributions carry large CP sensitivity

CPV IN MIXING

CP violation in mixing is quantified by

$$A_{CP}^{mix} = \left|\frac{q}{p}\right|^2 - 1.$$

For a final state accessible to both D^0 and $\overline{D}{}^0$ *CP* violation can arise from interference between mixing and decay, which is quantified by

$$\lambda_{f} \equiv \frac{qA_{f}}{p\bar{A}_{f}}$$
$$= \left|\frac{qA_{f}}{p\bar{A}_{f}}\right| e^{i\phi}$$

Such indirect *CP* violation is predicted to be $\mathcal{O}(10^{-4})$ in the SM^[8]. Observation of larger *CP* violation would be a strong indication of new physics.

CP eigenstates decays $D^0 \rightarrow K^+K^- / \pi^+\pi^-$

Mixing in D^0 decays to CP eigenstates, give rise to an effective lifetime τ that differs from that in the decays to flavor eigenstates such as $D \rightarrow K^* \pi^-$. Observables

$$y_{CP} = \frac{\tau(D^0 \to K^- \pi^+)}{\tau(D^0 \to K^- K^+)} - 1$$

PLB 486, 418 (2000)

 y_{CP} is equal to the mixing parameter y if CP is conserved.

Otherwise, effective lifetimes of \overline{D}^0 and D^0 decaying to the same CP eigenstate differ and the asymmetry

$$A_{\Gamma} = \frac{\tau(\overline{D}^0 \to K^- K^+) - \tau(D^0 \to K^+ K^-)}{\tau(\overline{D}^0 \to K^- K^+) + \tau(D^0 \to K^+ K^-)} \neq 0$$

In absence of direct CP violation, y_{CP} and A_{Γ} are related to x and y as

$$y_{CP} = \frac{1}{2} \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) y_{COS} \phi - \frac{1}{2} \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) x_{Sin} \phi$$
$$A_{\Gamma} = \frac{1}{2} \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y_{COS} \phi - \frac{1}{2} \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x_{Sin} \phi$$
$$\text{where } \phi = \arg(\frac{q}{p})$$

PLB 486, 418 (2000) JHEP 0705, 102 (2007)

We measure:

Difference in proper decay time distributions of $D^0 \rightarrow f$ and $\overline{D^0} \rightarrow f$

V. Bharadwaj, CKM2016

RESULTS

CHARM CPV STATUS

 $a_{CP}^{ind} = 0.00058 \pm 0.00040$ $\Delta a_{CP}^{dir} = -0.00257 \pm 0.00104$

No evidence for CPV in the charm sector at 1.8% CL

DOTO KSKS

SM limit 1.1% for direct CPV in $D^0 \rightarrow K_s^{0}K_s^{0}$ U. Nierste and A. Schacht, PRD 92 (2015) 054036 SCS decays (such as $D^0 \rightarrow K_s^{\ 0}K_s^{\ 0}$) are special interest: possible interference with NP amplitude could lead to larger nonzero CPV The previous measured $A_{CP} (D^0 \rightarrow K_s^0 K_s^0)$: 13.7 fb⁻¹ PRD 63 (2001) 071101 CLEO $(-23 \pm 19)\%$ 3 fb⁻¹ JHEP 10 (2015) 055 LHCb $(-2.9 \pm 5.2 \pm 2.2)\%$ Method: $A_{CP}(D^0 \to K_s^0 K_s^0) = (A_{RC}(K_s^0 K_s^0) - A_{RC}(K_s^0 \pi^0)) + A_{CP}(D^0 \to K_s^0 \pi^0) + A_{K0/K^0}$ $A_{_{KO/K^{-}0}}$: Asymmetry originating from the different strong interaction of K0 and K0 mesons with nucleons of the detector material = $(-0.11 \pm 0.01)\%$ [B. R. Ko et al., PRD 84 (2011) 111501] $A_{CP} (D^0 \to K_s^0 \pi^0) = (-0.20 \pm 0.17)\%$ [PDG] N. Dash, ICHEP 2016 15

DOTO KSKS

$A_{_{CP}}(D^0 \rightarrow K_{_S}^{\ \ 0}K_{_S}^{\ \ 0}) = (-0.02 \pm 1.53 \pm 0.17)\%$ [Preliminary result]

[arXiv: 1609.06393]

Source	Systematic uncertainty, in $\%$
Signal shape	± 0.01
Peaking background	± 0.01
$K^0/\bar{K^0}$ material effects	± 0.01
A_{CP} measurement of $K^0_S \pi^0$	± 0.17
Total	± 0.17

With 50 ab-1 at Belle II, expect a precision of ~ 0.2 % on ACP

REQUIREMENT FOR CHARM FACTORIES

- Large samples of charm
- High signal efficiency and good background rejection
- Large boost (displaced vertex), hermetic detector, excellent PID, γ and $\pi0$

NEW FLAVOUR TAGGING TECHNIQUE AT BELLE II Prompt D⁰ Flavour Tagging

- Can we recover at least a fraction of the 75% produced D⁰ not coming from a charged D* decay?
 - reconstruct the D⁰ in the signal channel and define the rest of the event (ROE) as all the reconstructed particles that are not coming from the signal D⁰ decay
 - select events with one single K in the ROE

- ➡ flavour mis-tagging due to ccss when a K escapes reconstruction: these events introduce un-correlated charged kaons into the rest of the event
- irreducible mistag due to DCS decays of the rest of the event charmed meson or baryon

G. Casarosa², A. Kagan¹, A. Petrov³, A. Schwartz¹

Signal & Background contributions

Category	%	$\omega_{ m rel}$
Signal K^{\pm}	64.2 ± 0.8	-
K^{\pm} from $c\overline{c}s\overline{s}$	20.9 ± 0.3	28.7 ± 0.9
K^{\pm} from DCS decay	2.7 ± 0.1	100
Missing K^{\pm}	10.6 ± 0.2	33.1 ± 0.7
Fake K^{\pm}	1.6 ± 0.1	59.2 ± 2.4
Background sum	35.8 ± 0.5	36.5 ± 1.8

Figure 1.3: Performance of the multivariate classification for the selection of charged tracks generated by K^{\pm} .

Figure 1.4: Distribution of θ_{rel}^* for signal K^{\pm} (left) and all of the background K^{\pm} (right). The dotted vertical line is at the value $\cos(\theta_{\rm rel}^*) = -0.7$.

Since the two charm quarks are produced back-to-back, a signal K in the ROE tends to be produced to the opposite direction respect to the neutral D meson.

cos(theta* rel)

- Left plot: Ratio between the statistical error on a A_{CP} measurement using the two different flavour tagging methods (D* and ROE, given by σ^X and σ⁰) as a function of the purity of D⁰ samples.
- Right plot: Ratio between the combined statistical error (σ^C) and the statistical error from the D* method.
- Reference point for the ratio of the purity of D⁰ samples: 1.4 [PhysRevD.87.012004]
- In the best case, assuming the value 1.4 for Belle II, we can expect a reduction of ~15% of the statistical error on a A_{CP} measurement.

25

* ratio between the purity of the untagged D0 sample and the purity of the tagged (with D*) sample

FUTURE PROSPECTS

- Sensitivity needs to be improved
- Mixing in charm is well-established
- Yet to observe CPV in charm decays: D0 to Ks Ks is an interesting channel to hunt for it
- Belle II, LHCb, BESIII collaborations expected to be major players

BACK-UP

Variable name	Description	
$ \vec{p} $	track momentum in the lab frame	
$\cos(\theta)$	cosine of the track polar angle	
d_0	transverse impact parameter	
z_0	longitudinal impact parameter	
$Prob(\chi^2)$	χ^2 track fit probability	
nHit(PXD)	number of PXD hits	
nHit(SVD)	number of SVD hits	
nHit(CDC)	number of CDC hits	
$\operatorname{PID}_{\operatorname{ARICH}}(K)$	ARICH $PID(K)$ selector	
$\operatorname{PID}_{\operatorname{TOP}}(K)$	TOP $PID(K)$ selector	
$\operatorname{PID}_{\operatorname{CDC}}(K)$	CDC PID(K) selector	
$\operatorname{PID}_{\operatorname{TOP}}(p)$	TOP $PID(K)$ selector	
$\operatorname{PID}_{\operatorname{CDC}}(p)$	CDC PID(K) selector	
$PID_{ARICH}(\mu)$	ARICH PID(μ) selector	
$PID_{TOP}(\mu)$	TOP $PID(\mu)$ selector	
$\operatorname{PID}_{\operatorname{CDC}}(\mu)$	CDC $PID(\mu)$ selector	
$\operatorname{PID}_{\operatorname{ARICH}}(e)$	ARICH $PID(e)$ selector	
$\operatorname{PID}_{\operatorname{TOP}}(e)$	TOP $PID(e)$ selector	
$\operatorname{PID}_{\operatorname{CDC}}(e)$	CDC $PID(e)$ selector	

Table 1.1: List of the variables used for the FastBDT training for the charged K candidates selection.

CHARM SPECTROSCOPY

Non-relativistic frame-work with "Cornell Potential"

Alternate method: Lattice Calculation

Charming debut of "charm" quark in 1974 "The November Revolution"

Brookhaven National Lab via AIP Emilio Segre Visual Archives

http://www.slac.stanford.edu/spires/

Burt Richter (L), Sam Ting (R)

"Charming Socialites"

First evidence of charm mixing in 2007 by BaBar, Belle, later by CDF

Charm mixing: Experimental Techniques

- D^{*+} to $D^{\circ}\pi^{+}_{slow}$: Flavor tagging using π^{+}_{slow}
- Data used is usually Upsilon (4S) data: p_{D*} in CMS frame > 2.5 GeV to suppress D*+ coming from B decays
- Kinematic variables looked at: D° invariant mass (M_D °), Mass difference M_{D^*} M_D °

Charm mixing

D^{*} decays to D^o and a soft π D^o decays to K⁻ π ⁺ (Right sign decay)

http://www.fnal.gov/pub/today/archive/archive_2013/today13-07-11.html

Impact on the charm physics @ Belle II (II)

It's also possible to evaluate size of the stastical uncertainty of a CP asimmetry measured with the new sample.

If A_0 is the "true" asimmetry we want to measure, the statistical error σ_A will be:

$$σ_A \sim 1 / Q^{1/2}$$
 Q = ε_{tag} (1 - 2ω)

If σ_{A}° is the error measured with the new tecnhique, σ_{A}^{*} is the error with D^{*+} techinque and σ_{A}° is the combined error, we have:

