Dalitz Plots

S Uma Sankar

Department of Physics Indian Institute of Technology Bombay Mumbai, India

Some References

- Gunnar Kallen, Elementary Particle Physics, Addison-Wesley Publishing Company Inc., 1964.
- A. D. Martin and T. D. Spearman, Elementary Particle Theory, North-Holland Publishing Company, 1970.
- W. S. C. Williams, *An Introduction to Elementary Particles*, Academic Press Inc., 1971.
- T. D. Lee, *Particle Physics and Introduction to Field Theory*, Harwood Academic Publishes, 1981.
- Charles Zemach, Physical Review 133, B1201 [1964].
- Dibyakripa Sahoo, IMSc. Ph.D. Thesis, 2016 (Available on HBNI website.
- K. Peters, Amplitude Analysis, Talk given at Advanced Study Institute on Extracting Physics from Precision Experiments at College of William and Mary, Williamsburg, Virginia, USA [May 30, 2012].

Dalitz Plots for θ decay

Properties of Dalitz-Plots

Density distribution in the Dalitz Plot given by

Dynamics is contained by the matrix element $\, {\cal M} \,$

non-resonant processes $\Rightarrow \mathcal{M}=$ const., uniform distribution resonant processes \Rightarrow bands (horizontal, vertical, diagonal) spins \Rightarrow Density distribution along the bands

Properties of Dalitz Plots

For the process $M \to Rm_3$, $R \to m_1m_2$ the matrix element can be expressed like

$$\mathcal{M}_{R}(L, m_{12}, m_{23}) = Z(L, \vec{p}, \vec{q}) \cdot B_{L}^{M}(p) \cdot B_{L}^{R}(q) \cdot T_{R}(m_{12})$$

Winkelverteilung Formfaktor Resonanz-Fkt. (Legendre Polyn.) (Blatt-Weisskopf-F.) (z.B. Breit Wigner)

- $Z(L, \vec{p}, \vec{q})$ decay angular distribution of R
 - $B_L^M(p)$ Form-(Blatt-Weisskopf)-Factor for $M \rightarrow Rm_3$, $p=p_3$ in R_{12}
 - $B_L^R(q)$ Form-(Blatt-Weisskopf)-Factor for $R \rightarrow m_1 m_2$, $q=p_1$ in R_{12}
- $T_R(m_{12})$ Dynamical Function (Breit-Wigner, K-Matrix, Flatté)

J → L+I	Z
$0 \rightarrow 0 + 0$	1
$0 \rightarrow 1 + 1$	$\cos^2\theta$
$0 \rightarrow 2 + 2$	$[\cos^2\theta - 1/3]^2$

Angular Distributions

23

density distribution along the band = decay angular distribution of R

results from Spin of R, the spin configuration and polarization of initial and final state(s)

Compare $R = \rho$ and ϕ (both 1-) angular distributions are different !!

Phase space

visual inspection of the phase space distribution

are the structures? structures from signal or background? are there strong interferences, threshold effects, potential resonances?

