Quantum correlated measurements at CLEO-c and its CP violation sensitivity in Belle

Resmi P K, Jim Libby

Indian Institute of Technology Madras

Post-CKM School

December 5, 2016

Introduction

- CLEO-c and quantum correlation
- Calculation of CP content F_+
- Extraction of c_i and s_i
- CPV sensitivity
- Summary

Introduction

CKM angles - current status

Figure : Constraints on CKM parameters as of 2015 [1].

¹http://ckmfitter.in2p3.fr

arXiv:1611.03076v1 [hep-ex]

Current best results for CKM angles

• $\phi_1 = 21.5^{+0.8}_{-0.7}$ deg.

•
$$\phi_2 = 85.4^{+4.0}_{-3.8}$$
 deg.

•
$$\phi_3 = 73.2^{+6.3}_{-7.0}$$
 deg.

Recent results from LHCb

•
$$\phi_3 = 72.2^{+6.8}_{-7.3}$$
 deg. [2]

• Determine ϕ_3 via interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \bar{D^0} K^-$

colour allowed $B^- \rightarrow D^0 K^- \approx V_{cb} V_{us}^* \qquad B^- \rightarrow \bar{D^0} K^- \approx V_{ub} V_{cs}^*$

colour suppressed

The above two amplitudes are related by

$$\frac{A(B^- \to \bar{D^0}K^-)}{A(B^- \to D^0K^-)} = r_B e^{i(\delta_B - \phi_3)}$$

•
$$r_B = \left| \frac{A(B^- \to \bar{D^0}K^-)}{A(B^- \to D^0K^-)} \right|, \delta_B = \delta(B^- \to \bar{D^0}K^-) - \delta(B^- \to D^0K^-).$$

• No loop contribution \Rightarrow **clean way** to measure ϕ_3 .

ϕ_3 measurements - different methods

Gronau - London - Wyler (GLW) method [3]

- Modes with known CP content (*F*₊) [4] can be used along with CP eigenstates.
- Giri Grossman Soffer Zupan (GGSZ) method [5]
 - Binned Dalitz plot analysis of multibody *D* final states like $K_5^0 \pi^+ \pi^-$, $K_5^0 K^+ K^-$, $K_5^0 \pi^+ \pi^- \pi^0$.

$$\begin{aligned} & \Gamma_{i}^{n} \xrightarrow{} D(K_{S}^{0}h^{+}h^{-})K^{-} \\ & \Gamma_{i}^{-} = K_{i} + r_{B}^{2}\bar{K}_{i} + 2\sqrt{K_{i}}\bar{K}_{i}(c_{i}x_{-} + s_{i}y_{-}), \\ & \text{and for } B^{+} \rightarrow D(K_{S}^{0}h^{+}h^{-})K^{+}, \\ & \Gamma_{i}^{+} = \bar{K}_{i} + r_{B}^{2}K_{i} + 2\sqrt{K_{i}}\bar{K}_{i}(c_{i}x_{+} - s_{i}y_{+}). \\ & D(X_{\pm} = r_{B}\cos(\delta_{B} \pm \phi_{3}); y_{\pm} = r_{B}\sin(\delta_{B} \pm \phi_{3}). \end{aligned}$$

 c_i, s_i - cos and sin of the strong phase difference between D⁰ and D
⁰ averaged over the region of phase space.

³M. Gronau and D. London, Phys. Lett. B **253**, 483 (1991); M. Gronau and D. Wyler, Phys. Lett. B **265**, 172 (1991).

⁴M. Nayak *et al.* (CLEO collaboration), Phys. Lett. B **740**, 1 (2015).

 $^5\text{A}.$ Giri, Yu. Grossman, A. Soffer and J. Zupan, Phys. Rev. D 68, 054018 (2003).

- Information on the *D* decay is required to determine *x*,*y*.
- Quantum correlated $D\bar{D}$ mesons produced in e^+e^- collisions at an energy corresponding to $\Psi(3770)$ at CLEO-c can be used.
- A D decay mode not yet used is $K_S^0 \pi^+ \pi^- \pi^0$.
- The decay $D^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0$ has a relatively large branching fraction of 5.2% which is almost twice that of $K_S^0 \pi^+ \pi^-$ [6].
- Interesting resonance substructure.
 - $K_S^0 \omega$ CP eigenstate GLW like.
 - $K^-\pi^+\pi^0$ Cabibbo-favored state (CF) ADS like.
- As powerful as $K_S^0 \pi^+ \pi^-$ in the determination of ϕ_3 ?

⁶C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).

CLEO-c and quantum correlation

Quantum correlated *D* mesons at CLEO-c

• $\Psi \rightarrow D\bar{D}$ are produced coherently in the C = -1 state.

$$\frac{\left(\ket{D}\ket{\bar{D}}-\ket{\bar{D}}\ket{D}\right)}{\sqrt{2}}$$

 If Ψ(3770) decays into two states F and G, then decay rate (Γ) depends on their CP eigenvalue.

Figure : CLEO-c detector.

- *F* = CP even (odd), *G* = CP odd (even) ⇒ two-fold enhancement.
- F = CP even (odd), G = CP even (odd) \Rightarrow zero.
- Γ changes with F or G being quasi CP states (π⁺π⁻π⁰) or self conjugate states (K⁰_Sπ⁺π⁻).

CLEO-c data sample and signal selection

- A total of 818 pb⁻¹ data collected at the CLEO-c $D\overline{D}$ pairs from the $\Psi(3770)$.
- One of the *D* mesons reconstructed to $K_S^0 \pi^+ \pi^- \pi^0$ (signal) and the other one to any other channel (tag).
- Fully reconstructed modes M_{bc} and ΔE .
- Partially reconstructed modes missing mass technique.

Туре	mode	yield	
CP even tags	$\kappa^+\kappa^-$	200.7 ± 14.2	
	$\pi^+\pi^-$	91.45 ± 9.59	
	$\kappa_{S}^{0}\pi^{0}\pi^{0}$	106.3 ± 10.9	
	$\kappa_L^0 \pi^0$	357.3 ± 20.2	
	$\kappa_L^0 \omega$	162.1 ± 13.7	
CP odd tags	$K_S^0 \pi^0$	93.97 ± 9.84	
	$K_S^0 \eta$	11.64 ± 3.68	
	$\kappa^0_S \eta'$	7 ± 3	
Quasi CP tags	$\pi^{+}\pi^{-}\pi^{0}$	428.8 ± 21.7	
Self conjugate tags	$\kappa_S^0 \pi^+ \pi^-$	504.8 ± 23.3	
	$\kappa^0_L \pi^+ \pi^-$	864.1 ± 46.1	
	$K_{s}^{0}\pi^{+}\pi^{-}\pi^{0}$	176.4 ± 14.8	
Flavour tag	$K^{\pm}e^{\mp}\nu$	1010 ± 32	

Calculation of F_+

CP content (F_+)

- The double tagged yield for the signal and tag $M(S|T) = 2N_{D\bar{D}} \times BF(S) \times BF(T) \times \epsilon(S|T) \times [1 \lambda_{CP}(2F_{+} 1)].$
- The single tag yield

$$S(T) = 2N_{D\bar{D}} \times BF(T) \times \epsilon(T).$$

 If we assume ε(S|T) = ε(S)ε(T), then we get N⁺ for CP odd tag and N⁻ for CP even tag as follows:

$$N^{\pm} = \frac{M(S|T)}{S(T)} = BF(S) \times \epsilon(S) \times [1 - \lambda_{CP}(2F_{+} - 1)].$$

• From these, we can calculate F_+ as

$$F_+ = \frac{N^+}{N^+ + N^-}; \quad F_+ = 1 \Rightarrow \mathrm{CP} \text{ even}, F_+ = 0 \Rightarrow \mathrm{CP} \text{ odd}.$$

Calculation of F_+ - CP tags

• The CP odd and CP even tags are used to evaluate N^+ and N^- respectively.

Figure : N^+ values for the CP odd tags. The yellow region shows the average value

Note: The x-axis scale for N^+ is much smaller than that of N^- .

• The value of F_+ is obtained to be **0.240**±**0.021**, *i.e* $K_S^0 \pi^+ \pi^- \pi^0$ is significantly **CP odd**.

Calculation of F_+ - $\pi^+\pi^-\pi^0$ tag

•
$$F_+$$
 for $\pi^+\pi^-\pi^0 = 0.973 \pm 0.017$ [7].

• Define $N^{\pi^+\pi^-\pi^0}$ as the ratio of double tagged events and $\pi^+\pi^-\pi^0$ single tag events

$$N^{\pi^+\pi^-\pi^0} = \frac{M(K_{S}^{0}\pi^+\pi^-\pi^0|\pi^+\pi^-\pi^0)}{S(\pi^+\pi^-\pi^0)}.$$

• Then with N^+ from CP tags, we can get

$$F_{+}^{K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}} = \frac{N^{+}F_{+}^{\pi^{+}\pi^{-}\pi^{0}}}{N^{\pi^{+}\pi^{-}\pi^{0}} - N^{+} + 2N^{+}F_{+}^{\pi^{+}\pi^{-}\pi^{0}}}.$$

• With CP and $\pi^+\pi^-\pi^0$ tags, F_+ is **0.244**±**0.021**.

⁷S. Malde et.al, Phys. Lett. B **747**, 9 (2015).

Calculation of F_+ - $K_S^0 \pi^+ \pi^-$ and $K_L^0 \pi^+ \pi^-$ tags

 The K⁰_Sπ⁺π⁻ and K⁰_Lπ⁺π⁻ Dalitz plots are binned according to Equal δ_D BABAR 2008 scheme [8].

Resmi P K, IIT Madras QC measurements & CPV sensitivity

Calculation of F_+ - $K_S^0 \pi^+ \pi^-$ and $K_L^0 \pi^+ \pi^-$ tags

• Fit with 64 observables;
$$\frac{\chi^2}{\text{DoF}} = 1.3$$
.

Figure : The predicted and measured yields for $K_S^0 \pi^+ \pi^-$ (left) and $K_L^0 \pi^+ \pi^-$ (right).

- *F*₊ is found to be **0.265**±**0.029**.
- With all the three methods, the average F_+ is **0.246**±**0.018**.

Extraction of c_i and s_i

Binning $K_S^0 \pi^+ \pi^- \pi^0$ phase space

- $N_{\text{bins}} > 4 \Rightarrow \phi_3$ extraction in $B^{\pm} \rightarrow DK^{\pm}$ data in GGSZ framework requires c_i, s_i, K_i and \bar{K}_i .
- Dividing the 5-D phase space of K⁰₅π⁺π[−]π⁰ not as trivial as the 2-D phase space of K⁰₅π⁺π[−] ⇒ i and −i symmetry non-trivial.
- Amplitude model not available \Rightarrow a proper optimisation difficult.
- Split the phase-space into a series of bins around the resonances and work out partial rates in each.
- Exclusive binning.

Figure : Invariant mass distribution for $\pi^+\pi^-\pi^0$ (left) and 2-D distribution between the invariant masses or $K_S^0\pi^-$ and $\pi^+\pi^0$ (right).

Extraction of c_i and s_i

• For a CP tag, the double tagged yield is given by

$$M_i^{\pm} = h_{CP} \left[K_i + \bar{K}_i \pm 2\sqrt{K_i \bar{K}_i} c_i \right].$$

For $\pi^+\pi^-\pi^0$ tag, the c_i sensitive term is scaled by $(2F_+ - 1)$ rather than 1. • For $K_S^0\pi^+\pi^-\pi^0$ double tagged events, the yield is given by

$$M_{ij} = h_{corr} \left[K_i \bar{K}_j + \bar{K}_i K_j - 2 \sqrt{K_i \bar{K}_j \bar{K}_i K_j} (c_i c_j + s_i s_j) \right].$$

• For $K^0_S \pi^+ \pi^-$ tag

$$M_{i\pm j}^{K_S\pi\pi} = h_{K_S\pi\pi} \left[K_i K_{\mp j}^{K_S\pi\pi} + \bar{K}_i K_{\pm j}^{K_S\pi\pi} - 2\sqrt{K_i K_{\pm j}^{K_S\pi\pi} \bar{K}_i K_{\mp j}^{K_S\pi\pi}} (c_i c_j^{K_S\pi\pi} \pm s_i s_j^{K_S\pi\pi}) \right]$$

• Similarly for $K_L^0 \pi^+ \pi^-$ tag,

$$M_{i\pm j}^{K_L\pi\pi} = h_{K_L\pi\pi} \left[K_i K_{\mp j}^{K_L\pi\pi} + \bar{K}_i K_{\pm j}^{K_L\pi\pi} + 2\sqrt{K_i K_{\pm j}^{K_L\pi\pi} \bar{K}_i K_{\mp j}^{K_L\pi\pi}} (c_i c_j^{K_L\pi\pi} \pm s_i s_j^{K_L\pi\pi}) \right]$$

Bin number	Specification	Ki	<i>Ki</i>
1	${\sf m}(\pi^+\pi^-\pi^0)pprox{\sf m}(\omega)$	0.222 ± 0.019	0.176 ± 0.017
2	$m(K^0_S\pi^-)pproxm(K^{*-})\ \&\ m(\pi^+\pi^0)pproxm(ho^+)$	0.394 ± 0.022	0.190 ± 0.017
3	$m(K_S^0\pi^+) \approx m(K^{*+}) \& m(\pi^-\pi^0) \approx m(\rho^-)$	0.087 ± 0.013	0.316 ± 0.021
4	$m(K_S^0\pi^-) pprox m(K^{*-})$	0.076 ± 0.012	0.046 ± 0.009
5	${\sf m}({\sf K}^0_S\pi^+)pprox{\sf m}({\sf K}^{*+})$	0.057 ± 0.010	0.065 ± 0.011
6	$m(\kappa_S^0\pi^0)pproxm(\kappa^{*0})$	0.059 ± 0.011	0.092 ± 0.013
7	${\sf m}(\pi^+\pi^0)pprox{\sf m}(ho^+)$	0.045 ± 0.009	0.045 ± 0.009
8	Remainder	0.061 ± 0.011	0.070 ± 0.011

- The semileptonic tag $K^{\pm}e^{\mp}\nu$ is used to calculate K_i and \bar{K}_i , the fraction of decays in each bin.
- The double tagged yields are given to the fitter along with the c_i , s_i , K_i and \bar{K}_i values for $K_S^0 \pi^+ \pi^-$ and $K_L^0 \pi^+ \pi^-$ [9] as input.
- Corrected for bin-to-bin migration.

⁹J. Libby et al. (CLEO collaboration), Phys. Rev. D 82, 112006 (2010).

c_i and s_i results - preliminary

• The combined fit: 472 observables including different tag yields in each bin; $\frac{\chi^2}{\text{DoF}} = 1.04$.

- The uncertainties shown are statistical only.
- $c_i < 0 \Rightarrow \mathbf{CP}$ oddness of $K_S^0 \pi^+ \pi^- \pi^0$.

CPV sensitivity in Belle

Estimates of ϕ_3 sensitivity with $B^\pm o D(K_S^0 \pi^+ \pi^- \pi^0) K^\pm$

- Assumed increase in BF compensated by loss of efficiency due to π⁰ in final state.
- With 1200 events (Belle sample of $B^{\pm} \rightarrow D(K_{S}^{0}\pi^{+}\pi^{-})K^{\pm})$ $\sigma_{\phi_{3}} = 25^{\circ} - 1000$ pseudo experiments using c_{i} , s_{i} , K_{i} and \bar{K}_{i} measurements reported.
- Project to a 50 ab^{-1} sample $\sigma_{\phi_3} = 3.5^{\circ}$.
- Compare to $B^{\pm} \rightarrow D(K_S^0 \pi^+ \pi^-) K^{\pm} \sigma_{\phi_3} \sim 2^{\circ}$.

Resmi P K. IIT Madras

- Improvements:
 - Optimized binning once a $D^0 \rightarrow K^0_S \pi^+ \pi^- \pi^0$ amplitude model developed.
 - Finer binning possible with 10 ${\rm fb}^{-1}$ of BESIII data.
- Caveat: background to be studied.

$B^{\pm} \rightarrow D(K_S^0 \pi^+ \pi^- \pi^0) K^{\pm}$ at Belle

- The currently dominant measurement sensitive to ϕ_3 uses $B \to DK^{\pm}$ where D goes to a three-body final state of $K_s^0 \pi^+ \pi^-$ [10].
- $B^{\pm}
 ightarrow D(K_s^0 \pi^+ \pi^- \pi^0) K^{\pm}$ similar sensitivity.
- GGSZ framework input from CLEO-c results.
- We propose to use a data sample corresponding to an integrated luminosity of 711 fb⁻¹ (772 million $B\bar{B}$ pairs) collected at Belle.
- Variables CM-energy difference $\Delta E = \Sigma E_i E_{beam}$ and the beam constrained *B* meson mass $M_{bc} = \sqrt{E_{beam}^2 (\Sigma \overline{\rho_i})^2}$.
- The invariant mass of *D* meson would be constrained to the invariant mass of its decay products.

¹⁰H. Aihara *et al.* (Belle collaboration), Phys. Rev. D **85**, 112014 (2012).

$B^{\pm} \rightarrow D(K_S^0 \pi^+ \pi^- \pi^0) K^{\pm}$ at Belle

• The background due to $e^+e^- \rightarrow q\bar{q}$ with q = u, d, s, c needs to be eliminated from the signal.

• Signal yield to be extracted from an extended maximum likelihood fit in each bin and proceed to study ϕ_3 sensitivity.

- Calculated the CP content F_+ for the decay $D^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0$ from CLEO-c data to be **0.246±0.018**.
- Addition of this mode to quasi-GLW methods to determine ϕ_{3} .
- Extracted the strong phase differences by introducing an eight bin scheme for the $K_S^0 \pi^+ \pi^- \pi^0$ phase space.
- Addition to GGSZ formalism to determine ϕ_3 .
- Sensitivity to ϕ_3 from a 50 ab^{-1} sample, $\sigma_{\phi_3} = 3.5^{\circ}$.