Aspects of B-Decays

Debjyoti Bardhan
Tata Institute of Fundamental Research
Email: debjyotiarr@gmail.com

Post-CKM School, TIFR

$7^{\text {th }}$ December, 2016

My CKM TALK - (EN?)LIGHTNING SUMMARY

R_{D} and $R_{D^{*}}$ anomalies : Experiments don't match data @ 4σ (Both taken together)

No deviation from the SM results if only e and μ are considered

Model-independent analysis of the R_{D} and $R_{D^{*}}$ anomalies

Based on:
arXiv:1610.03038

Took six-dimensional operators and their corresponding Wilson Coefficients

Found ranges for these Wilson Coefficients

Used different observables like Tau polarization, FB Asymmetry and binned $R_{D^{*}}$ prediction to differentiate between different Wilson Coefficients

My CKM Talk - Lightning Summary Explaining R_{D}

- R_{D} dependent on : $C_{V L}^{\tau}$ and $C_{S L}^{\tau}$

My CKM Talk - Lightning Summary
 Explaining $R_{D^{*}}$

- $R_{D^{*}}$ dependent on : $C_{V L}^{\tau}, C_{A L}^{\tau}$ and $C_{P L}^{\tau}$

My CKM Talk Lighting Summary

Differentiating
 Between the Scenarios

- Can differentiate between the different Wilson coefficients
- Urged experimentalists to make this measurement

The Hadronic Problem!

Hadronic elements
Non-perturbative effects
Cannot be calculated in perturbation theory

Put it into form factors

Separating Long and Short Distance Physics

Hydrogen Atom

How does the presence of the bottom quark in the proton affect the electronic energy levels?
Not much!
But why?
Correction to the ground level:

$$
E_{0}=\frac{1}{2} m_{e} \alpha^{2}[1+\overbrace{\ddots}^{1}\left(\frac{m_{e}^{2}}{m_{b}^{2}}\right]
$$

But... Separation of Scales allows one to forget about the high energy physics

Separating Long and Short Distance Physics

Four Fermi Theory - $b \rightarrow c+e^{-}+\bar{v}_{e}$

Consider the process in the b-rest frame

Full theory
$\xrightarrow[\text { W - boson }]{\text { Integrate out the }}$

Effective Theory

W-boson is much heavier than the CM energy - doesn't affect physics at low scales
Energy-momentum transfer is limited by b-quark mass; b-quark is far less massive than W-boson

$$
|q|<m_{b} \ll M_{W}
$$

Separating Long and Short Distance Physics

Scale of separation - μ

Choose a scale μ above which the short distance physics is given by the Wilson coefficients Below the scale, there is long distance physics contained in the effective operators

$$
\mathcal{H}_{e f f}=\frac{4 G_{F}}{\sqrt{2}} V_{c b} \sum_{i} C_{i}(\mu) \mathcal{O}_{i}(\mu)
$$

The whole combination is independent of μ
Good choice : $\mu \sim m_{B}$
Scale dependence of WCs \Rightarrow Given by the anomalous dimensions (Won't talk about that!)

Our Observables

Consider the differential branching ratio:

$$
\begin{aligned}
\frac{d^{2} \mathcal{B}}{d q^{2} d \cos \theta} & =\mathcal{N}\left|p_{D^{(*)}}\right|\left[a_{\ell}\left(q^{2}\right)+b_{\ell}\left(q^{2}\right) \cos \theta+c_{\ell}\left(q^{2}\right) \cos ^{2} \theta\right] \\
\mathcal{B} & =\int \mathcal{N}\left|p_{D^{(*)}}\right|\left[2 a_{\ell}\left(q^{2}\right)+\frac{2}{3} c_{\ell}\left(q^{2}\right)\right]
\end{aligned}
$$

$R_{D^{*}}\left(\right.$ binned and unbinned) $\& P_{\tau}=$ functions of a_{ℓ} and c_{ℓ}

Operator Basis

$$
\begin{aligned}
\mathcal{O}_{\mathrm{VL}}^{c b \ell} & =\left[\bar{c} \gamma^{\mu} b\right]\left[\bar{\ell} \gamma_{\mu} P_{L} \nu\right] \\
\mathcal{O}_{\mathrm{AL}}^{c b \ell} & =\left[\bar{c} \gamma^{\mu} \gamma_{5} b\right]\left[\bar{\ell} \gamma_{\mu} P_{L} \nu\right] \\
\mathcal{O}_{\mathrm{SL}}^{c b \ell} & =[\bar{c} b]\left[\bar{\ell} P_{L} \nu\right] \\
\mathcal{O}_{\mathrm{PL}}^{c b \ell} & =\left[\bar{c} \gamma_{5} b\right]\left[\left[\bar{\ell} P_{L} \nu\right]\right. \\
\mathcal{O}_{\mathrm{TL}}^{c b \ell} & =\left[\bar{c} \sigma^{\mu \nu} b\right]\left[\bar{\ell} \sigma_{\mu \nu} P_{L} \nu\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{O}_{\mathrm{VR}}^{c b \ell} & =\left[\bar{c} \gamma^{\mu} b\right]\left[\bar{\ell} \gamma_{\mu} P_{R} \nu\right] \\
\mathcal{O}_{\mathrm{AR}}^{c b \ell} & =\left[\bar{c} \gamma^{\mu} \gamma_{5} b\right]\left[\bar{\ell} \gamma_{\mu} P_{R} \nu\right] \\
\mathcal{O}_{\mathrm{SR}}^{c b \ell} & =[\bar{c} b]\left[\bar{\ell} P_{R} \nu\right] \\
\mathcal{O}_{\mathrm{PR}}^{c b \ell} & =\left[\bar{c} \gamma_{5} b\right]\left[\left[\bar{\ell} P_{R} \nu\right]\right. \\
\mathcal{O}_{\mathrm{TR}}^{c b \ell} & =\left[\bar{c} \sigma^{\mu \nu} b\right]\left[\bar{\ell} \sigma_{\mu \nu} P_{R} \nu\right]
\end{aligned}
$$

Related to the "popular" basis
And their corresponding
Wilson coefficients

$$
C_{V L}^{\tau}, C_{A L}^{\tau} \text { etc }
$$

Not all contribute to the two decays

$$
\begin{aligned}
\mathcal{O}_{9}^{c b \ell^{\prime}} & =\left[\bar{c} \gamma^{\mu} \mathrm{P}_{R} b\right]\left[\bar{\ell} \gamma_{\mu} \nu\right] \\
\mathcal{O}_{10}^{c \ell^{\prime}} & =\left[\bar{c} \gamma^{\mu} \mathrm{P}_{R} b\right]\left[\bar{\ell} \gamma_{\mu} \gamma_{5} \nu\right] \\
\mathcal{O}_{s}^{c \ell^{\prime}} & =\left[\bar{c} \mathrm{P}_{R} b\right][\bar{\ell} \nu] \\
\mathcal{O}_{p}^{c b \ell^{\prime}} & =\left[\bar{c} \mathrm{P}_{R} b\right]\left[\left[\bar{\ell} \gamma_{5} \nu\right]\right. \\
\mathcal{O}_{T 5}^{c b \ell} & =\left[\bar{c} \sigma^{\mu \nu} b\right]\left[\bar{\ell} \sigma_{\mu \nu} \gamma_{5} \nu\right]
\end{aligned}
$$

FORM FACTORS \& SYMMETRIES

Consider

Since the matrix element transforms in a certain way, only those operators transforming properly w.r.t the mesonic fields contribute to the transition

FORM FACTORS: $B \rightarrow D$ DECAYS

$$
\left\langle D\left(p_{D}, M_{D}\right)\right| \bar{c} \gamma^{\mu} b\left|\bar{B}\left(p_{B}, M_{B}\right)\right\rangle=\boldsymbol{A}\left(p_{B}+p_{D}\right)^{\mu}+\boldsymbol{B}\left(p_{B}-p_{D}\right)^{\mu}=\boldsymbol{A}\left(p_{B}+p_{D}\right)^{\mu}+\boldsymbol{B} q^{\mu}
$$

$$
\begin{aligned}
\left\langle D\left(p_{D}, M_{D}\right)\right| \bar{c} \gamma^{\mu} b\left|\bar{B}\left(p_{B}, M_{B}\right)\right\rangle= & F_{+}\left(q^{2}\right)\left[\left(p_{B}+p_{D}\right)^{\mu}-\frac{M_{B}^{2}-M_{D}^{2}}{q^{2}} q^{\mu}\right] \\
& +F_{0}\left(q^{2}\right) \frac{M_{B}^{2}-M_{D}^{2}}{q^{2}} q^{\mu} \\
\left\langle D\left(p_{D}, M_{D}\right)\right| \bar{c} \gamma^{\mu} \gamma_{5} b\left|\bar{B}\left(p_{B}, M_{B}\right)\right\rangle= & 0 \\
\left\langle D\left(p_{D}, M_{D}\right)\right| \bar{c} b\left|\bar{B}\left(p_{B}, M_{B}\right)\right\rangle= & F_{0}\left(q^{2}\right) \frac{M_{B}^{2}-M_{D}^{2}}{m_{b}-m_{c}} \\
\left\langle D\left(p_{D}, M_{D}\right)\right| \bar{c} \gamma_{5} b\left|\bar{B}\left(p_{B}, M_{B}\right)\right\rangle= & 0
\end{aligned}
$$

Form Factors: $B \rightarrow D^{*}$ Decays

$$
\left\langle D^{*}\left(p_{D^{*}}, M_{D^{*}}\right)\right| \bar{c} \gamma_{\mu} b\left|\bar{B}\left(p_{B}, M_{B}\right)\right\rangle \quad \text { Transforms as an axial vector }
$$

Three vectors in the system: $p_{B}^{\mu}, p_{D^{*}}^{\mu} \& \epsilon^{\mu}$
Challenge: Use these three vectors to form an object which transforms like an axial vector -
Only one possibility: $\boldsymbol{A} \varepsilon_{\mu v \rho \sigma} \epsilon^{* v} p_{B}^{\rho} p_{D^{*}}^{\sigma}$

$$
\begin{aligned}
\left\langle D^{*}\left(p_{D^{*}}, M_{D^{*}}\right)\right| \bar{c} \gamma_{\mu} b\left|\bar{B}\left(p_{B}, M_{B}\right)\right\rangle= & i \varepsilon_{\mu \nu \rho \sigma} \epsilon^{\nu *} p_{B}^{\rho} p_{D^{*}}^{\sigma} \frac{2 V\left(q^{2}\right)}{M_{B}+M_{D^{*}}} \\
\left\langle D^{*}\left(p_{D^{*}}, M_{D^{*}}\right)\right| \bar{c} \gamma_{\mu} \gamma_{5} b\left|\bar{B}\left(p_{B}, M_{B}\right)\right\rangle= & 2 M_{D^{*}} \frac{\epsilon^{*} \cdot q}{q^{2}} q_{\mu} A_{0}\left(q^{2}\right)+\left(M_{B}+M_{D^{*}}\right)\left[\epsilon_{\mu}^{*}-\frac{\epsilon^{*} \cdot q}{q^{2}} q_{\mu}\right] A_{1}\left(q^{2}\right) \\
& -\frac{\epsilon^{*} \cdot q}{M_{B}+M_{D^{*}}}\left[\left(p_{B}+p_{D^{*}}\right)_{\mu}-\frac{M_{B}^{2}-M_{D^{*}}^{2}}{q^{2}} q_{\mu}\right] A_{2}\left(q^{2}\right) \\
\left\langle D^{*}\left(p_{D^{*}}, M_{D^{*}}\right)\right| \bar{c}\left|\bar{B}\left(p_{B}, M_{B}\right)\right\rangle= & 0 \\
\left\langle D^{*}\left(p_{D^{*}}, M_{D^{*}}\right)\right| \bar{c} \gamma_{5} b\left|\bar{B}\left(p_{B}, M_{B}\right)\right\rangle= & -\epsilon^{*} \cdot q \frac{2 M_{D^{*}}}{m_{b}+m_{c}} A_{0}\left(q^{2}\right)
\end{aligned}
$$

Eye to Eye with the Observables!

$$
\begin{aligned}
a_{\ell}^{D}(+)= & \frac{2\left(M_{B}^{2}-M_{D}^{2}\right)^{2}}{\left(m_{b}-m_{c}\right)^{2}}\left|\mathbf{C}_{\mathbf{S L}}^{\ell}\right|^{\mathbf{2}} \mathbf{F}_{\mathbf{0}}^{\mathbf{2}} \\
& +m_{\ell}\left[\frac{4\left(M_{B}^{2}-M_{D}^{2}\right)^{2}}{q^{2}\left(m_{b}-m_{c}\right)} \mathcal{R}\left(\mathbf{C}_{\mathbf{V L}}^{\ell} \mathbf{C}_{\mathbf{S L}}^{\ell *}\right) \mathbf{F}_{\mathbf{0}}^{\mathbf{2}}\right] \\
& +m_{\ell}^{2}\left[\frac{2\left(M_{B}^{2}-M_{D}^{2}\right)^{2}}{q^{4}}\left|\mathbf{C}_{\mathbf{V L}}^{\ell}\right|^{\mathbf{2}} \mathbf{F}_{\mathbf{0}}^{2}\right] \\
b_{\ell}^{D}(+)= & -m_{\ell}\left[\frac{8\left|p_{D}\right| M_{B}\left(M_{B}^{2}-M_{D}^{2}\right)}{q^{2}\left(m_{b}-m_{c}\right)} \mathcal{R}\left(\mathbf{C}_{\mathbf{S L}}^{\ell} \mathbf{C}_{\mathbf{V L}}^{\ell *}\right) \mathbf{F}_{\mathbf{0}} \mathbf{F}_{+}\right] \\
& -m_{\ell}^{2}\left[\frac{8\left|p_{D}\right| M_{B}\left(M_{B}^{2}-M_{D}^{2}\right)}{q^{4}}\left|\mathbf{C}_{\mathbf{V L}}^{\ell}\right|^{\mathbf{2}} \mathbf{F}_{\mathbf{0}} \mathbf{F}_{+}\right] \\
c_{\ell}^{D}(+)= & m_{\ell}^{2}\left[\frac{8\left|p_{D}\right|^{2} M_{B}^{2}}{q^{4}}\left|\mathbf{C}_{\mathbf{V L}}^{\ell}\right|^{\mathbf{2}} \mathbf{F}_{+}^{\mathbf{2}}\right]
\end{aligned}
$$

Symmetries in the Standard Model

A Big Basket of SM Symmetries

A lot of global symmetries of the Standard Model -
(not the usual gauge symmetry)

```
Introduction to Flavour Physics
Grossmann
arXiv: 1006.3534
```


"Accidental" Symmetries

Flavour symmetry of the D-type singlets

No. of generators : $9 \times 3=27$

Write down Yukawa fields as spurions; in this \mathcal{G}_{F}^{q} space:

$$
\mathcal{L}_{Y}=\bar{Q}_{L} \boldsymbol{Y}_{\boldsymbol{U}} \tilde{\phi} U_{R}+\bar{Q}_{L} \boldsymbol{Y}_{\boldsymbol{D}} \phi D_{R}
$$

$$
\begin{aligned}
Q_{L} & =(3,1,1) \\
U_{R} & =(1,3,1) \\
D_{R} & =(1,1,3) \\
\boldsymbol{Y}_{\boldsymbol{U}} & =(\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1}) \\
\boldsymbol{Y}_{\boldsymbol{D}} & =(\mathbf{3}, \mathbf{1}, \overline{\mathbf{3}})
\end{aligned}
$$

A Big Basket of SM Symmetries

Yukawas $\rightarrow 3 \times 3$ matrices; Total of 36 independent parameters
Broken Symmetry:

$$
\begin{array}{ccc}
U(3)_{Q} \times U(3)_{U} \times U(3)_{D} & \mathbf{2 7} \text { generators } & \\
\underset{\sim}{\downarrow}\left\langle\boldsymbol{Y}_{\boldsymbol{U}}\right\rangle,\left\langle\boldsymbol{Y}_{\boldsymbol{D}}\right\rangle & & \mathbf{2 6} \text { broken generators } \\
U(1)_{B} & \mathbf{1} \text { generator } &
\end{array}
$$

Use $N_{\text {broken }}=26$ to rotate away most of the Yukawa

$$
N_{\text {physical }}=N_{\text {total }}-N_{\text {broken }}=36-26=10
$$

Interpret $N_{\text {physical }}=10$ as $\mathbf{6}$ quark masses, $\mathbf{3}$ mixing angles and $\mathbf{1 C P}$ violating phase

Try this with 2 generations of quarks, instead of 3 . Show that there is no CP violation.

Homework Solution

For two generations, the symmetry is: $U(2)_{Q} \times U(2)_{U} \times U(2)_{D}$

12 generators
11 broken generators
1 generator
No. of Yukawa elements $=8 \times 2=16$

Thus, $N_{\text {physical }}=16-11=5$

Interpret them as the masses of the 4 quarks and the rotation angle in the 2×2 mixing matrix

No phase appears \rightarrow No CP violation

Heavy Quark Effective 'Theory

Effective Field Theory Course :
 By Prof. Iain Stewart
 MIT OpenCourseWare (OCW)

References for this section:

1. Review of Heavy Quark Effective Theory

Thomas Mannel
hep-ph/9611411
2. Heavy Quark Expansion

Thorsten Feldmann
Talk in 2010: Feldmann.pdf
3. Heavy Quark Physics

Aneesh Manohar and Mark Wise CUP published book

Setting It Up

Have a heavy quark in the process - take $m_{Q} \rightarrow \infty$; gives a model-independent starting point
The mass of the quark is typically $m_{Q} \gg \Lambda_{Q C D}$
Expand in powers of $1 / m_{Q}$ or $\Lambda_{Q C D} / m_{Q}$

Non-Relativistic form of the Dirac equation
On-shell momentum
Momentum:

$$
p_{Q}=m_{Q} v+k \longrightarrow \text { On-shell }
$$

$v^{\mu} \Rightarrow$ Some velocity parameter

$$
v^{2}=1
$$

Quark field:

$$
Q(x)=e^{-i M_{Q} v \cdot x}\left[Q_{v}(x)+B_{v}(x)\right]
$$

Components:

$$
e^{i M_{Q} v . x} \frac{1+\not ้}{2} Q=Q_{v} \quad e^{i M_{Q} v . x} \frac{1-\not ้}{2} Q=B_{v}
$$

Why the exponential?

Propagator:

$$
\frac{\not p+M_{Q}}{p^{2}-M_{Q}^{2}+i \varepsilon}=\left(\frac{1+\not p}{2}\right) \frac{1}{v \cdot k+i \varepsilon}
$$

HQET LAGRANGIAN

The (matter part) HQET Lagrangian can be derived from the QCD Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{H Q E T}=\left(\bar{Q}_{v}+\bar{B}_{v}\right) e^{i M_{Q} v . x}\left[\nsim i v . D+i \not \emptyset_{T}-M_{Q}\right] e^{-i M_{Q} v . x}\left(Q_{v}+B_{v}\right) \quad i \not \emptyset=\nsim i v . D+i \not \emptyset_{T} \\
& \text { Simplify } \\
& \mathcal{L}_{H Q E T}=\bar{Q}_{v} i v . D Q_{v}-\bar{B}_{v}\left(i v . D+2 M_{Q}\right) B_{v}+\bar{Q}_{v} i D_{T} B_{v}+\bar{B}_{v} i D_{T} Q_{v} \\
& \text { Hint: Use - } \\
& \not \partial Q_{v}=Q_{v} \\
& \not{\psi} B_{v}=-B_{v} \\
& \mathcal{L}_{H Q E T}=\bar{Q}_{v}(i v . D) Q_{v} \longrightarrow B_{v} \text { field propagator is suppressed! }
\end{aligned}
$$

Only one type of field - no massive anti-matter fields
No pair production
No annihilation

Spin and Flavour Symmetries

$$
\mathcal{L}_{H Q E T}=\bar{Q}_{v}(i v . D) Q_{v}
$$

The Lagrangian is invariant under rotations in flavour space - no mass appears
Also spin symmetry

$$
S U\left(2 N_{h}\right) \Rightarrow \text { Spin-flavour symmetry }
$$

Spin of the heavy quark and the light degrees of freedom are separately conserved

Consider spin symmetry : $m_{B^{*}}=m_{B}$ in exact HQ symmetry limit \rightarrow Obviously not true

Hyperfine corrections break degeneracy!

$$
\begin{aligned}
& m_{H^{*}}-m_{H} \propto \frac{1}{m_{Q}} \Rightarrow\left(m_{H^{*}}^{2}-m_{H}^{2}\right)=\mathrm{const} \\
& m_{B^{*}}^{2}-m_{B}^{2} \approx 0.49 \mathrm{GeV}^{2} \\
& m_{D^{*}}^{2}-m_{D}^{2} \approx 0.55 \mathrm{GeV}^{2}
\end{aligned}
$$

For Flavour symmetry, the spectator quark flavour must not matter

$$
\begin{gathered}
m_{H_{s}}-m_{H}=\text { const } \\
m_{B_{s}}-m_{B} \approx 100 \mathrm{MeV} \\
m_{D_{s}}-m_{D} \approx 100 \mathrm{MeV}
\end{gathered}
$$

Calculation of the Form Factors

$$
\begin{aligned}
\langle D| V^{\mu}|B\rangle & =\boldsymbol{h}_{+}\left(v_{b}+v_{c}\right)^{\mu}+\boldsymbol{h}_{-}\left(v_{b}+v_{c}\right)^{\mu} \\
\left\langle D^{*}\right| V^{\mu}|B\rangle & =\boldsymbol{h}_{\boldsymbol{V}} \varepsilon^{\mu \nu \alpha \beta} \epsilon_{v} v_{b \alpha} v_{c \beta} \\
\left\langle D^{*}\right| A^{\mu}|B\rangle & =-i \boldsymbol{h}_{\boldsymbol{A 1}}(w)(w+1) \epsilon^{* \mu}+i \boldsymbol{h}_{\boldsymbol{A} 2}(w)\left(\epsilon^{*} \cdot v_{b}\right) v_{b}^{\mu}+i \boldsymbol{h}_{\boldsymbol{A} \mathbf{3}}(w)\left(\epsilon^{*} \cdot v_{b}\right) v_{c}^{\mu}
\end{aligned}
$$

$$
w=\boldsymbol{v}_{\boldsymbol{b}} \cdot \boldsymbol{v}_{\boldsymbol{c}}
$$

$$
\text { No } \epsilon^{*} . v_{c} \text { term - why? }
$$

HQET relates all these form factors to each other
$\left\langle H^{c}\right| \bar{c} \Gamma b\left|H^{b}\right\rangle=\left\langle H^{c}\right| \bar{c}_{v} \Gamma b_{v}\left|H^{b}\right\rangle$

- Current is invariant under individual rotations of b and c
- Thus $\Gamma \rightarrow D(R)_{c} \Gamma D(R)_{b}$ is a symmetry
- Represent currents by operators each containing a heavy field
$\bar{c}_{v^{\prime}} \Gamma b_{v}=\operatorname{Tr}\left(X \bar{H}_{v_{c}}^{c} \Gamma H_{v_{b}}^{b}\right)$
- Put in the most general form of X
- $X=X_{0}+X_{1} \psi_{b}+X_{2} \psi_{c}+X_{3} \psi_{b} \psi_{c}$

$$
\bar{c}_{v}, \Gamma b_{v}=-\xi(\mathrm{w}) \operatorname{Tr}\left(\bar{H}_{v_{c}}^{c} \Gamma H_{v_{b}}^{b}\right)
$$

Calculation of the Form Factors

$$
\bar{c}_{v} \Gamma b_{v}=-\xi(\mathrm{w}) \operatorname{Tr}\left(\bar{H}_{v_{c}}^{c} \Gamma H_{v_{b}}^{b}\right)
$$

Put in different gamma matrices and compute trace!

$$
\begin{aligned}
& \langle D| V^{\mu}|B\rangle=h_{+}\left(v_{b}+v_{c}\right)^{\mu}+h_{-}\left(v_{b}+v_{c}\right)^{\mu} \Rightarrow\langle\boldsymbol{D}| \boldsymbol{V}^{\mu}|\boldsymbol{B}\rangle=\boldsymbol{\xi}(\boldsymbol{w})\left[\boldsymbol{v}_{\boldsymbol{b}}^{\boldsymbol{\mu}}+\boldsymbol{v}_{\boldsymbol{c}}^{\boldsymbol{\mu}}\right] \\
& \begin{aligned}
&\left\langle D^{*}\right| V^{\mu}|B\rangle=h_{V} \varepsilon^{\mu v \alpha \beta} \epsilon_{\boldsymbol{v}} v_{b \alpha} v_{c \beta}=\boldsymbol{\xi}(\boldsymbol{w}) \boldsymbol{\varepsilon}^{\boldsymbol{\mu} \boldsymbol{v} \boldsymbol{\beta} \boldsymbol{\beta}} \boldsymbol{\epsilon}_{\boldsymbol{v}} \boldsymbol{v}_{\boldsymbol{b} \boldsymbol{\alpha}} \boldsymbol{v}_{\boldsymbol{c} \boldsymbol{\beta}} \\
& \begin{aligned}
\left\langle D^{*}\right| A^{\mu}|B\rangle & =-i h_{A 1}(w)(w+1) \epsilon^{* \mu}+i h_{A 2}(w)\left(\epsilon^{*} \cdot v_{b}\right) v_{b}^{\mu}+i h_{A 3}(w)\left(\epsilon^{*} \cdot v_{b}\right) v_{c}^{\mu} \\
& =-\boldsymbol{i} \xi(\boldsymbol{w})\left[(\boldsymbol{w}+\mathbf{1}) \boldsymbol{\epsilon}^{* \boldsymbol{\mu}}-\left(\boldsymbol{\epsilon}^{*} \cdot \boldsymbol{v}_{\boldsymbol{b}}\right) \boldsymbol{v}_{\boldsymbol{c}}^{\mu}\right]
\end{aligned} \\
& h_{+}(w)=h_{v}(w)=h_{A 1}(w)=h_{A 3}(w)=\xi(w) \\
& h_{-}(w)=h_{A 2}(w)=0
\end{aligned}
\end{aligned}
$$

Did not show, but true: Decay widths are related to these HQET parameters.
They are measured experimentally.

SUMMARY

Introduction to Effective Theory using Four Fermi interaction

- Separation of Scales
- The issue of the factorization scale μ

Form Factors and Symmetries

- Symmetry transformations constrain the possibilities
- Use Formfactors to hide our ignorance

Global Symmetries of the Standard Model

Heavy Quark Effective Theory

- Heavy Quark Symmetry - simplified
- Calculation of form factors (sketch)

