Study of discrete symmetries at $\Upsilon(5S)$

Bharti, Dr. Namit Mahajan

Physical Research Laboratory

December 7, 2016

Post-CKM school, 2016 TIFR, Mumbai

B(s) meson system

Flavour eigenstates

- $B^0 \equiv b \bar{d}$, $\bar{B}^0 \equiv \bar{b} d$; Mass ~ 5279 MeV , Lifetime $\sim 1.5 ps$
- $B_s^0 \equiv b\bar{s}$, $\bar{B}_s^0 \equiv \bar{b}s$; Mass ~ 5366 MeV , Lifetime $\sim 1.5 ps$

CP eigenstates

- CP transformation of Flavoured mesons: $\mathcal{CP}\ket{B^0}=\ket{\bar{B}^0}$; $\mathcal{CP}\ket{\bar{B}^0}=\ket{B^0}$
- CP eigenstates are thus superposition of flavoured mesons

$$B_{+} \equiv \frac{1}{\sqrt{2}}(B^{0} + \bar{B}^{0})$$
 $B_{-} \equiv \frac{1}{\sqrt{2}}(B^{0} - \bar{B}^{0})$
CP even CP odd

Effective Hamiltonian

- Dynamics of $B^0(\bar{B}^0)$ meson is given by time dependent Schrödinger equation

$$i\frac{\partial}{\partial t}\begin{pmatrix}B^{0}\\\bar{B}^{0}\end{pmatrix}=\mathcal{H}\begin{pmatrix}B^{0}\\\bar{B}^{0}\end{pmatrix}=\begin{pmatrix}M_{11}-i\frac{\Gamma_{11}}{2}&M_{12}-i\frac{\Gamma_{12}}{2}\\M_{21}-i\frac{\Gamma_{21}}{2}&M_{22}-i\frac{\Gamma_{22}}{2}\end{pmatrix}\begin{pmatrix}B^{0}\\\bar{B}^{0}\end{pmatrix}$$

- M_{11} and M_{22} are masses of B^0 and \bar{B}^0 in absence of weak interactions.
- Eigenvectors corresponding to $\mathcal{H} \Rightarrow \begin{pmatrix} B_H \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ B_L \end{pmatrix} \rightarrow \text{Physical particles}$
- Eigenvalues of $\mathcal{H} \Rightarrow \mu_{H,L} = m_{H,L} \frac{i}{2} \Gamma_{H,L} \rightarrow \text{masses and decay widths}$

Discrete Symmetries

CP violation

$$A_{CP} = \frac{\Gamma(B^0 \to I^+ \nu_I D^-) - \Gamma(\bar{B}^0 \to I^- \bar{\nu}_I D^+)}{\Gamma(B^0 \to I^+ \nu_I D^-) + \Gamma(\bar{B}^0 \to I^- \bar{\nu}_I D^+)}$$

T violation

$$A_{T} = \frac{\Gamma(B^{0} \to I^{+}\nu_{I}D^{-}) - \Gamma(I^{+}\nu_{I}D^{-} \to B^{0})}{\Gamma(B^{0} \to I^{+}\nu_{I}D^{-}) + \Gamma(I^{+}\nu_{I}D^{-} \to B^{0})}$$

CPT violation

$$A_{CPT} = \frac{\Gamma(B^0 \to I^+ \nu_I D^-) - \Gamma(I^- \bar{\nu}_I D^+ \to \bar{B}^0)}{\Gamma(B^0 \to I^+ \nu_I D^-) + \Gamma(I^- \bar{\nu}_I D^+ \to \bar{B}^0)}$$

B Factories

- Antisymmetric B factories are needed where e^- and e^+ beams collide at a centre of mass energy of 10.58 GeV \backsim mass of $\Upsilon(4s)$.
 - PEP-II e^+e^- collider at SLAC e^+ beam energy= 3.1 GeV e^- beam energy= 9.0 GeV $e^ \Upsilon(4s)$ e^-
 - This gives $\Upsilon(4s)$ a boost $(\beta \gamma) \backsim 0.56$
- $\Upsilon(4s)$ then decays to $B\bar{B}$ ($B^0\bar{B}^0$, B^+B^-) through strong processes.
- Purpose of an antisymmetric factory is to physically separate the decays of two B mesons $\mathcal{O}(100\mu m)$

Using $\Delta t \backsim \Delta z/\beta \gamma c$, time difference between two decays can be measured (1.5ps)

Initial state

- $J^{PC}(\Upsilon(4s)) = 1^{--}$.
- Bose-Einstein symmetry $\implies \mathcal{CP} = +$.
- S=0, L=1. $\Longrightarrow \mathcal{C} = -; \mathcal{P} = -[\mathcal{C} = (-1)^{L+S}; \mathcal{P} = (-1)^{L}]$
- Wavefunction of $B^0\bar{B}^0$ pair is antisymmetric

$$|i\rangle = \frac{1}{\sqrt{2}} \left[\left| B^0(\vec{k}) \bar{B}^0(-\vec{k}) - \left| \bar{B}^0(\vec{k}) B^0(-\vec{k}) \right\rangle \right]$$

In terms of CP eigenstates,

$$|i\rangle = \frac{1}{\sqrt{2}} \left[\left| B_+(\vec{k}) B_-(-\vec{k}) \right\rangle - \left| B_-(\vec{k}) B_+(-\vec{k}) \right\rangle \right]$$

EPR Entanglement

- EPR Entanglement states, For the entangled state of the two mesons, the individual state of each neutral meson is not defined before its collapse as a filter imposed by the observation of the decay.
- The state of the first B to decay at t_1 dictates the state of other B.
 - Using $\Delta b = \Delta q$ rule, we know that only $B^0 \to I^+$ and $\bar{B}^0 \to I^-$
 - \bar{B}^0 can now evolve independently and will undergo mixing.
 - Tagging Mechanism

Observed particle	decaying particle
l^+	B^0
l^-	$ar{B^0}$
$J/\Psi K_S$	B_{-}
$J/\Psi K_L$	B_{+}

T-conjugate process

T-Conjugated Process

All possible T conjugated processes:

Reference		T-conjugate	
Transition	Final state	Transition	Final state
$\overline B{}^0 o B$	$(\ell^+ X, J/\psi K_{\scriptscriptstyle S})$	$B o \overline{B}{}^0$	$(J/\psi K_L, \ell^- X)$
$B_+ \to B^0$	$(J/\psi K_S, \ell^+ X)$	$B^0 o B_+$	$(\ell^- X, J/\psi K_{\scriptscriptstyle L})$
$\bar{B}^0 \to B_+$	$(\ell^+ X, J/\psi K_{\scriptscriptstyle L})$	$B_+ o \overline{B}{}^0$	$(J/\psi K_S, \ell^- X)$
$B o B^0$	$(J/\psi K_L, \ell^+ X)$	$B^0 o B$	$(\ell^- X, J/\psi K_{\scriptscriptstyle S})$

CP and CPT asymmetries

The same methodology can be applied to test CP and CPT invariance.

Reference		CP-conjugate	
Transition	Final state	Transition	Final state
$\overline B{}^0 o B$	$(\ell^+ X, J/\psi K_s)$	$B^0 o B$	$(\ell^- X, J/\psi K_S)$
$B_+ \to B^0$	$(J/\psi K_S, \ell^+ X)$	$B_+ o \overline{B}{}^0$	$(J/\psi K_{\scriptscriptstyle S}, \ell^- X)$
$\overline B{}^0 o B_+$	$(\ell^+ X, J/\psi K_{\scriptscriptstyle L})$	$B^0 o B_+$	$(\ell^- X, J/\psi K_{\scriptscriptstyle L})$
$B \to B^0$	$(J/\psi K_L, \ell^+ X)$	$B o \overline{B}{}^0$	$(J/\psi K_L, \ell^- X)$

Reference		CPT-conjugate	
Transition	Final state	Transition	Final state
$\overline B{}^0 o B$	$(\ell^+ X, J/\psi K_s)$	$B o B^0$	$(J/\psi K_L, \ell^+ X)$
$B_+ \to B^0$	$(J/\psi K_S, \ell^+ X)$	$\overline B{}^0 o B_+$	$(\ell^+ X, J/\psi K_{\scriptscriptstyle L})$
$B^0 \to B$	$(\ell^- X, J/\psi K_{\scriptscriptstyle S})$	$B o \overline B{}^0$	$(J/\psi K_{\scriptscriptstyle L},\ell^-X)$
$B_+ \to \overline{B}{}^0$	$(J/\psi K_S, \ell^- X)$	$B^0 o B_+$	$(\ell^- X, J/\psi K_{\scriptscriptstyle L})$

Results by Babar

Coefficient	Assumed value	Fit value
$\Delta S_{\mathrm{T}}^{+} = S_{\ell^{-}, K_{L}}^{-} - S_{\ell^{+}, K_{S}}^{+}$	-1.4	-1.57 ± 0.15
$\Delta S_{\rm T}^- = S_{\ell^-,K_L}^+ \text{-} S_{\ell^+,K_S}^-$	1.4	1.25 ± 0.19
$\Delta C_{\mathrm{T}}^{+} = C_{\ell^{-},K_{L}}^{-} - C_{\ell^{+},K_{S}}^{+}$	0.0	-0.07 ± 0.14
$\Delta C_{\rm T}^- = C_{\ell^-,K_L}^+ \! - C_{\ell^+,K_S}^-$	0.0	-0.09 ± 0.14
$\Delta S_{\text{CP}}^+ = S_{\ell^-, K_S}^+ - S_{\ell^+, K_S}^+$	-1.4	-1.65 ± 0.11
$\Delta S^{\rm CP} = S^{\ell^-,K_S} S^{\ell^+,K_S}$	1.4	1.54 ± 0.13
$\Delta C_{\text{CP}}^+ = C_{\ell^-, K_S}^+ - C_{\ell^+, K_S}^+$	0.0	0.03 ± 0.10
$\Delta C_{\text{CP}}^- = C_{\ell^-,K_S}^- \cdot C_{\ell^+,K_S}^-$	0.0	-0.09 ± 0.10
$\Delta S_{\text{CPT}}^{+} = S_{\ell^{+}, K_{L}}^{-} \cdot S_{\ell^{+}, K_{S}}^{+}$	0.0	-0.25 ± 0.22
$\Delta S^{\mathrm{CPT}} = S^+_{\ell^+,K_L} \text{-} S^{\ell^+,K_S}$	0.0	0.04 ± 0.13
$\Delta C_{\mathrm{CPT}}^+ = C_{\ell^+,K_L}^- \cdot C_{\ell^+,K_S}^+$	0.0	-0.04 ± 0.15
$\Delta C^{\rm CPT} = C^+_{\ell^+,K_L} C^{\ell^+,K_S}$	0.0	-0.06 ± 0.13

$$- \Delta S = \frac{2\Im(\lambda)}{1+|\lambda|^2}; \ \Delta C = \frac{1-|\lambda|^2}{1+|\lambda|^2}; \ \lambda \propto \frac{\langle f|H|B^0 \rangle}{\langle f|H|\bar{B}^0 \rangle}.$$

- Results are in accordance with Standard Model within C.L. of 6σ .

$\Upsilon(5s)$

• $\Upsilon(5s)$ is a bound state of $b\bar{b}$ at resonance 10.860 GeV.

	7(10860) DECAY MODES			
29	Mode	Fraction (Γ_i/Γ) Confidence le	Confidence level	
Γ ₁	$B\overline{B}X$	(76.2 ^{+2.7} _{-4.0}) %		
Γ2	$B\overline{B}$	(5.5 ±1.0)%		
Гз	$B\overline{B}^* + c.c.$	(13.7 ±1.6)%		
Г4	$B^*\overline{B}^*$	(38.1 ±3.4) %		
Γ ₅	$B\overline{B}^{(*)}\pi$	< 19.7 %	0%	
Γ ₆ Γ ₇ Γ ₈	$B\overline{B}\pi$	(0.0 ±1.2)%		
Γ ₇	$B^*\overline{B}\pi + B\overline{B}^*\pi$	(7.3 ±2.3)%		
Γ8	$B^*\overline{B}^*\pi$	(1.0 ±1.4)%		
Го	$B\overline{B}\pi\pi$	< 8.9 % 9	0%	
Γ ₁₀	$B_s^{(*)} \overline{B}_s^{(*)} B_s \overline{B}_s$	(20.1 ±3.1) %		
Γ ₁₁	$B_s\overline{B}_s$	$(5 \pm 5) \times 10^{-3}$		
Γ ₁₂	$B_s \overline{B}_s^* + \text{c.c.}$	(1.35±0.32) %		
Γ ₁₃	$B_s \overline{B}_s^* + \text{c.c.}$ $B_s^* \overline{B}_s^*$	(17.6 ±2.7) %		

The analysis discussed for $\Upsilon(4S)$ can be carried out at resonance $\Upsilon(5S)$ but that is more tricky because of two reasons.

- It decays to a state of entangled B ($\Delta m = 0.51 ps^{-1}$; $\Delta \Gamma = 0.007 s^{-1}$) mesons as well as B_s ($\Delta m = 17.8 ps^{-1}$; $\Delta \Gamma = 0.08 ps^{-1}$) mesons.
- Different final states have different C-parities.

Parametrizing quantities

 Following parametrization has been used to study violation of discrete symmetries

$$\epsilon \equiv \frac{\epsilon_1 + \epsilon_2}{2} \qquad \qquad \delta = \epsilon_2 - \epsilon_1$$

- Consider the conditions imposed by discrete symmetries on elements of effective mass matrix
 - CP conservation $\implies \Im(M_{12}CP_{12}^*) = \Im(\Gamma_{12}CP_{12}^*) = 0$ and $H_{11} = H_{22}$.
 - CPT conservation $\implies H_{11} = H_{22}$.
 - T invariance $\implies \Im(M_{12}CP_{12}^*) = \Im(\Gamma_{12}CP_{12}^*) = 0$
- The conditions in terms of ϵ and δ ,
 - $\Re(\epsilon) \neq 0$ signals CP and T violation, if $\Delta\Gamma \neq 0$;
 - $\Im(\epsilon) \neq 0$ indicates CP and T violation;
 - $\Re(\delta) \neq 0$ implies CP and CPT violation;
 - $\Im(\delta) \neq 0$ means CP and CPT violation, if $\Delta\Gamma \neq 0$.
- Objective is to constrain these 4 observables.

$$|B_H\rangle = rac{1}{\sqrt{1+\epsilon_1^2}}(|B_+\rangle + \epsilon_1 |B_-\rangle)$$
 $|B_L\rangle = rac{1}{\sqrt{1+\epsilon_2^2}}(|B_-\rangle + \epsilon_2 |B_+\rangle)$

Asymmetries

- Defining different asymmetries as
 - **1 Equal semileptonic:** This is defined as

$$A_1 = \frac{P(I^+, I^+) - P(I^-, I^-)}{P(I^+, I^+) + P(I^-, I^-)}$$

where P(a, b) is the transition probability of observering a at time t_1 and b at time t_2 .

Unequal semileptonic: which is defined as

$$A_2 = \frac{P(I^+, I^-) - P(I^-, I^+)}{P(I^+, I^-) + P(I^-, I^+)}$$

Openic-hadronic: It involves detection of one leptonic flavour specific state and one hadronic eigenstate. It is defined as

$$A_3 = \frac{P(K_s, I^+) - P(K_I, I^-)}{P(K_s, I^+) + P(K_I, I^-)}$$

$$P(I^+, I^+) \implies \bar{B}^0 \to B^0$$

 $P(I^-, I^-) \implies \bar{B}^0 \to B^0$

$$P(I^+, I^-) \implies \bar{B}^0 \to \bar{B}^0$$

 $P(I^-, I^+) \implies B^0 \to B^0$

$$P(K_s, I^+) \implies B_+ \to B^0$$

 $P(K_s, I^-) \implies B_+ \to \bar{B}^0$

C=-1 state

- In the expressions, x and y are defined as, $x = \frac{\Delta m}{\Gamma}$; $y = \frac{\Delta \Gamma}{\Gamma}$
- tm is the time difference in observation of a and b.
- ϵ and δ have been redefined as $\kappa\epsilon$ and $\kappa\delta$ respectively, where κ is the expansion parameter. Only leading terms are shown here:

$$A_1 = 4\kappa \Re(\epsilon)$$

(i) $\sin(\Delta {
m mtm}) - \Re(\delta) \sinh(\Delta {
m I})$

$$A_2 = -\frac{2\kappa(\Im(\delta)\sin(\Delta mtm) - \Re(\delta)\sinh(\Delta\Gamma tm))}{\cosh(\Delta\Gamma tm) + \cos(\Delta mtm)}$$

$$A_3 = \kappa \left[\frac{(\Im(\delta) - 2\Im(\epsilon))\sin(\Delta mtm)}{\sinh(\Delta \Gamma tm) + \cosh(\Delta \Gamma tm)} + \right]$$

$$\frac{(-\Re(\delta) + 2\Re(\epsilon))(\sinh(\Delta\Gamma tm) + \cosh(\Delta\Gamma tm) - \cos(\Delta mtm))}{\sinh(\Delta\Gamma tm) + \cosh(\Delta\Gamma tm)}]$$

C=+1 state

$$-A_{1}=$$

$$2\kappa \left[-\Re(\delta)\left(x^{3}\sinh(\Delta\Gamma tm)+x^{3}y\cosh(\Delta\Gamma tm)+2xy\cos(\Delta mtm)+8y\sin(\Delta mtm)\right)\right.\\ \left.+\Im(\delta)\left(2x^{2}\cosh(\Delta\Gamma tm)+x^{2}\cos(\Delta mtm)+3x\sin(\Delta mtm)+8y\sinh(\Delta\Gamma tm)\right)\right.\\ \left.+2x\Re(\epsilon)\left(-\cos(\Delta mtm)+x^{2}\cosh(\Delta\Gamma tm)+x^{2}y\sinh(\Delta\Gamma tm)+x\sin(\Delta mtm)\right)\right]}{x\left(-\cos(\Delta mtm)+x^{2}\cosh(\Delta\Gamma tm)+x^{2}y\sinh(\Delta\Gamma tm)+x\sin(\Delta mtm)\right)}\\ -A_{2}=$$

$$-4\kappa \left[\Im(\delta)\left(-x^{2}\cosh(\Delta\Gamma tm)+x^{2}\cos(\Delta mtm)+2x\sin(\Delta mtm)-4y\sinh(\Delta\Gamma tm)\right)+\frac{\Re(\delta)(-2x\sinh(\Delta\Gamma tm)+xy\cosh(\Delta\Gamma tm)-xy\cos(\Delta mtm)-4y\sin(\Delta mtm))}{x\left(\cos(\Delta mtm)+x^{2}\cosh(\Delta\Gamma tm)+x^{2}y\sinh(\Delta\Gamma tm)-xy\sin(\Delta mtm)\right)}\right.$$

C=+1 state

 $- A_3 =$

$$\kappa \left(\begin{array}{l} \cosh(\Delta\Gamma tm) \left[2\left(x^2 + 1 \right) \left(\Re(\delta) + 2\Re(\epsilon) \right) \left(x^2 + (y+2)^2 \right) \right] - \\ 2\cos(\Delta mtm) (y+1) \left[-x \left(\Im(\delta) \left(3x^2 - y(y+4) \right) + 2\Im(\epsilon) \left(x^2 + (y+2)^2 \right) \right) + \\ \Re(\delta) \left(x^2 (4y+7) - y^2 + 4 \right) + 2\Re(\epsilon) \left(x^2 + (y+2)^2 \right) \right] + \\ 2\sin(\Delta mtm) (y+1) \left[\Im(\delta) \left(x^2 (4y+7) - y^2 + 4 \right) + 2\Im(\epsilon) \left(x^2 + (y+2)^2 \right) + \\ x\Re(\delta) \left(3x^2 - y(y+4) \right) + 2x\Re(\epsilon) \left(x^2 + (y+2)^2 \right) \right] - \\ 2\sinh(\Delta\Gamma tm) \left(x^2 + 1 \right) \left(\Re(\delta) + 2\Re(\epsilon) \right) \left(x^2 + (y+2)^2 \right) \\ \left(2\left(x^2 + 1 \right) \left(x^2 + (y+2)^2 \right) \right) \left(\cosh[\Delta\Gamma tm] - \sinh[\Delta\Gamma tm] \right) \right) \right) \right)$$

Conclusion

Final asymmetry is

$$A = \frac{R1[P(I^+, I^+)_- - P(I^-, I^-)_-] + R2[P(I^+, I^+)_+ - P(I^-, I^-)_+]}{R1[P(I^+, I^+)_- + P(I^-, I^-)_-] + R2[P(I^+, I^+)_+ - P(I^-, I^-)_+]}$$

where R1 are R2 are branching ratios for C=-1 and +1 states respectively.

- These asymmetries can be measured in B factories and the parameters; $\Re(\delta)$, $\Im(\delta)$, $\Re(\epsilon)$, $\Im(\epsilon)$ can be constrained.
- This idea can be extended for LHCb as well, where the Bbbar pairs can be written as a linear combination of symmetric and antisymmetric states.