Flavour physics at Belle (II) and LHCb

"Recent results and discussions on their interpretation"

Mumbai, December 4^{th} 2016

Karim Baksh

Karim Lala (don of Mumbai)

Lala is the original 'don of Mumbai.'

The guy is the one who founded the country's most notorious and powerful criminal organisation called '<u>The Indian Mafia</u>'. Lala was France born in Afghanistan and despite being a gangster (like so many of his fellows) he was kind to the poor and needy. He was mostly involved with crimes like extortion ...

where ? (well...) when ? (now...) what and how will follow in the next slides

A rich physics program...

- $\circ~$ Studies of CPV in B and B_{s} decays
- b→s transitions: probe for new sources of CPV and constraints from the b→s γ observables
- ∘ Forward-backward asymmetry and other observables in $b \rightarrow s l^+ l^-$
- Search for the charged Higgs in the rare decays $B \rightarrow \tau \nu$, $D^{(*)} \tau \nu$
- $\circ~$ Study of $B_{_{S}}$, $B_{_{C}}$, $\Lambda_{_{b}}$ decays
- Study of $D^0 \overline{D}^0$ mixing
- $\circ~$ Search for CPV in D and D_s decays
- Studies of exotic charmonium, tetraquark, pentaquark states
- Studies of new bottomonium-like states
- $\circ~$ Search for lepton flavor violation (LFV) in τ decays
- $\circ~$ Search for CPV and study of hadronic τ decays
- $\circ~$ Light Higgs searches , DM searches ...

Main actors in B physics

Υ (4S) **B-factory**

- \circ 2 B mesons are created simultaneously in a L=1 coherent state
 - ⇒ before first decay , the final states contains a B and a \overline{B}

 ''on resonance'' production $e^+\,e^- \to \Upsilon\,(4S) \to B^0_d\,\overline B^0_d$, $B^+\,B^-$

 $\sigma(e^+e^- \rightarrow c\,\overline{c}) \simeq 1.3 \text{ nb} (\sim 1.3 \times 10^9 \text{ X}_c \text{ Y}_c \text{ pairs})$

 $\sigma(e^+e^- \rightarrow B\overline{B}) \simeq 1.1 \text{ nb} (\sim 10^9 \text{ } B\overline{B} \text{ pairs})$

 $\tau \tau$ production also !

LHCb is ...

- 1075 members, from 68 institutes in 17 countries (September 2014)
- Dedicated experiment for precision measurements of CP violation and rare decays
- Beautiful, charming, strange physics program

- pp collisions at $\sqrt{s} = 8(13)$ TeV in RunI (RunII)
- bb
 quark pairs produced correlated in the forward region
- Luminosity of $4 \times 10^{32} cm^{-2} s^{-1}$

LHCb

LHCb

Tracking system

Measure displaced vertices and momentum of particles

 $\sigma_{\scriptscriptstyle BV} \sim 16 \, \mu \, m$ in x, y

 $\sigma(m_B) \sim 24 \,\text{MeV}$ for two body decays

LHCb

Particle identification

Distinguish between pions, kaons, protons, electrons and muons

Kaon identification $\epsilon_{K} \sim 95\%$, $\epsilon_{\pi \rightarrow K}$ few%

Muon identification $\epsilon_{\mu} = 98\%$, $\epsilon_{\pi \rightarrow \mu} = 0.6\%$

<u>LHCb</u>

Trigger system Write out 5000 events/sec

Comparison Belle/LHCb

Belle

 $\begin{array}{l} e^+e^- \rightarrow Y(4S) \rightarrow b \,\overline{b} \\ \text{at } Y(4S) \colon 2 \ B^{\,\prime}s \ (B^0 \ or \ B^+) \text{ and} \\ \text{nothing else} \Rightarrow \text{clean events} \\ \sigma_{b\overline{b}} \sim 1 \, nb \Rightarrow 1 \ fb^{-1} \ produces \ 10^6 \ B \,\overline{B} \\ \sigma_{b\overline{b}} / \sigma_{total} \sim 1/4 \end{array}$

LHCb

 $p p \rightarrow b \overline{b} X$ production of B^+ , B^0 , B_s , B_c , Λ_b ... but also a lot of other particles in the event \Rightarrow lower reconstruction efficiencies

 $\sigma_{b \overline{b}}$ much higher than at the Y(4S)

	√s [GeV]	σ _{ьნ} [nb]	$\sigma_{_{bb}}$ / $\sigma_{_{tot}}$
HERA pA	42 GeV	~30	~10 ⁻⁶
Tevatron	2 TeV	5000	~10 ⁻³
LHC	8 TeV	~3x10 ⁵	~ 5x10 ⁻³
	14 TeV	~6x10 ⁵	~10 ⁻²

```
b \overline{\mathbf{b}} production cross-section ~ 5×Tevatron, ~ 500,000 × BaBar/Belle !!<br/>\sigma_{b\overline{b}}/\sigma_{total} much lower than at the Y(4S)<br/>\Rightarrow lower trigger efficienciesB mesons live<br/>mean decay length \beta\gamma c\tau \sim 200 \ \mu m<br/>[1999-2010]<br/>[1 ab^{-1}]relativey long<br/>mean decay length \beta\gamma c\tau \sim 7 \ mmImage: Belle II from 2018]Tevatron, ~ 500,000 × BaBar/Belle !!<br/>\sigma_{b\overline{b}}/\sigma_{total} much lower than at the Y(4S)<br/>\Rightarrow lower trigger efficienciesB mesons live<br/>mean decay length \beta\gamma c\tau \sim 7 \ mmmean decay length \beta\gamma c\tau \sim 7 \ mmImage: Decision of the trigger definition of trigger definition of the trigger definition of the trigger definition of the trigger definition of trigger definition of the trigger definition of trigger
```

CKM matrix and CP violation

Wolfenstein parametrisation in terms of $\lambda = 0.2272 \pm 0.0010$:

$$\begin{pmatrix} \mathbf{1} - \frac{1}{2}\lambda^2 & -\frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5 \left[1 - 2(\rho + i\eta)\right] & \mathbf{1} - \frac{1}{2}\lambda^2 & -\frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3 \left[1 - \left(1 - \frac{1}{2}\lambda^2\right)(\rho - i\eta)\right] & -A\lambda^2 + \frac{1}{2}A\lambda^4 \left[1 - 2(\rho + i\eta)\right] & \mathbf{1} - \frac{1}{2}A^2\lambda^4 \end{pmatrix} + \mathcal{O}(\lambda^6).$$

$$\lambda^{2} = \frac{|V_{us}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}} , \quad A^{2}\lambda^{4} = \frac{|V_{cb}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}} \quad \text{and} \quad \overline{\rho} + i\,\overline{\eta} = -\frac{V_{ud}V_{ub}^{i}}{V_{cd}V_{cb}^{i}}$$

- $\circ~\lambda~is$ measured from $|\,V_{ud}\,|$ and $|\,V_{us}\,|$ in superallowed beta decays and semileptonic kaon decays, respectively.
- $\,\circ\,$ A is further determined from $|\,V_{\rm cb}\,|$, measured from semileptonic charmed B decays.
- The last two parameters are to be determined from angles and side measurements of the CKM unitarity triangle

Time-dependent CP asymmetries in decays to CP eigenstates

 $\beta = \varphi_1$

 $\sin 2\phi_1$ from $B \rightarrow f_{CP} + B \leftrightarrow \overline{B} \rightarrow f_{CP}$ interf.

Δt

Measuring the CP parameters S and A

$c \overline{c} K_s$ and $J/\psi K_L$

$772 \times 10^6 \ B\overline{B}$ pairs

$\underline{\sin 2\beta \ in \ (c \ \overline{c}) K^0 \ ...}$

$\beta = (21.4 \pm 0.8)^{\circ}$

Critical role of the B factories in the verification of the KM hypothesis

A single irreducible phase in the weak interaction matrix accounts for most of the CPV observed in kaons and B's

Measurement of CPV in B \rightarrow J/\psi K_s^0 at LHCb

 3 fb^{-1} , arXiv:1503.07089

Reconstruct 41560 ± 720 tagged B \rightarrow J/ ψ K_s events with J/ ψ \rightarrow µµ and K_s \rightarrow π^{+} π^{-} in 3 fb⁻¹ (2011-2012 data)

Opposite side flavour-tagging mostly

Magnet polarity reversed periodically to help control detector asymmetries

Need to correct for production asymmetry at p-p collider (measured with $B_d \rightarrow J/\psi \mathbf{k}^*$)¹

$$\mathbf{A}_{\mathbf{P}} = \frac{[\sigma(\overline{\mathbf{B}}^{0}) - \sigma(\mathbf{B}^{0})]}{[\sigma(\overline{\mathbf{B}}^{0}) + \sigma(\mathbf{B}^{0})]}$$

 $\mathbf{5}$

10

10

 $t\,(\mathrm{ps})$

15

Flavour-Tagging at LHCb

Flavour-Tagging at LHCb

Measurement of CPV in B \rightarrow J/\psi K_S^0 at LHCb

15

 $t \,(\mathrm{ps})$

CPV in $B_s \rightarrow J/\psi \phi$ at LHCb

Tag initial flavour and measure decay time distributions, then essentially the measurement is of:

$$\frac{\sin(\phi_s) \times D(\sigma_t) \times (1 - 2\omega_{tag}) \times \sin(\Delta m_s t)}{CPV \text{ phase } Decay time Mistag } B_s \text{ mixing} \\ \phi_s = \Phi_M - 2 \Phi_D \text{ resolution } rate frequency}$$

In SM, CPV phase is small $\phi_s \sim -0.04~rd$

$\underline{\mathbf{B}}_{\mathrm{s}} \rightarrow \mathbf{J}/\psi \boldsymbol{\varphi}$

3 fb^{-1} , arXiv:1411.3104

Combinatorial background is flat

Results for $B_s \rightarrow J/\psi \phi$ at LHCb

CP violating phase

 $[3 \text{ fb}^{-1}, arXiv: 1411.3104]$

 $\phi_s = -0.058 \pm 0.049 \pm 0.006$

CP violating in mixing or direct decay (no CPV: $|\lambda|=1$)

 $|\lambda| = 0.964 \pm 0.019 \pm 0.007$

Decay width difference $\Delta \Gamma_{s} = (\Gamma_{L} - \Gamma_{H}) = 0.0805 \pm 0.0091 \pm 0.0032 \text{ ps}^{-1}$

increasing tree diagram amplitude

increasing sensitivity to new physics

sin 2β with $b \rightarrow s$ penguins dominated by B-factories

\Rightarrow Belle II

- 4000 signal events
 Combinatorial background is flat and small
- Very small contributions from mis-ID of $B_d \rightarrow \phi K^{*0}$ and $\Lambda_b \rightarrow \phi p K$
- mixture of CP eigenstates \Rightarrow angular analysis in helicity basis

 $\phi_s = -0.17 \pm 0.15 \pm 0.03$ rad

$$\begin{split} \phi_s(c\,\overline{c}\,s) &\sim -0.01 \pm 0.04 \ rad \\ \phi_s(SM) &= -0.0363 \ _{-0.0014}^{+0.0012} \end{split}$$

γ measurements from $B^{\pm} \rightarrow DK^{\pm}$ $\gamma = \varphi_3$

- \circ Theoretically pristine $B \rightarrow DK$ approach
- \circ Access γ via interference between $B^- \to D^0 K^- \, and \, B^- \to \overline{D}^0 K^-$

relative magnitude of suppressed amplitude is $r_{\scriptscriptstyle B}$

$$r_{\rm B} = \frac{|A_{\rm suppressed}|}{|A_{\rm favoured}|} \sim \frac{|V_{\rm ub}V_{\rm cs}^*|}{|V_{\rm cb}V_{\rm us}^*|} \times [\text{color supp}] = 0.1 - 0.2$$

relative weak phase is γ , relative strong phase is δ_B

y measurements from B[±] → DK[±]

- Reconstruct D in final states accessible to both D^0 and \overline{D}^0
 - D = D_{CP}, CP eigenstates as K⁺ K⁻, $\pi^+ \pi^-$, K_s π^0 **GLW method** (Gronau-London-Wyler)
 - D = D_{sup}, Doubly-Cabbibo suppressed decays as K π **ADS method** (Atwood-Dunietz-Soni)
 - Three-body decays as $D \rightarrow K_S \pi^+ \pi^-$, $K_S K^+ K^-$ **GGSZ** (**Dalitz**) **method** (**Giri-Grossman-Soffer-Zupan**)
 - Largest effects due to 0
 - charm mixing

- charm mixing
 - charm CP violation
 Small, can be included
 Y.Grossman, A.Soffer, J.Zupan
 [PRD 72, 031501 (2005)]

- Different B decays (DK, D^*K, DK^*)
 - different hadronic factors $(\mathbf{r}_{B}, \delta_{B})$ for each

<u>ADS method</u> measures φ_3 via the interference in rare $B^- \to [K^+\pi^-]_D\,K^-$ decays

Cabibbo favoured D decay

doubly Cabibbo suppressed D decay ADS rate and asymmetry (relative to the common decay):

Sensitivity to γ in $B \rightarrow D(K_s \pi \pi)K$ mode

sensitivity to γ/φ_3 varies across the Dalitz plot $\gamma = 75^{\circ}$, $\delta = 180^{\circ}$, $r_B = 0.125$

y angle in the global fit

<u>measurements from B → DK</u>

Rare B decays

FCNC are strongly suppressed in the SM: only loops + GIM mechanism
Any new particle generating new diagrams can change the amplitudes

$\mathbf{B}_{(s)} \rightarrow \mu \mu$: ultra rare processes...

loop diagram + suppressed in SM + theoretically clean =
an excellent place to look for new physics

$\mathbf{B}_{(\mathbf{s})} \rightarrow \mu \mu$: ultra rare processes...

Combination results $B_{(s)} \rightarrow \mu^+ \mu^-$ [arXiv:1411.4413] published in Nature

 $\mathbf{B} \rightarrow \mathbf{X}_{s} \boldsymbol{\gamma}$

rare ? not that rare...

NNLO SM calculation: $B_{SM}(B \rightarrow X_{s} \gamma) = (3.36 \pm 0.23) \times 10^{-4}$ Charged Higgs (2HDM Type II) bound (for $E_{\gamma} > 1.6 \text{ GeV}$) M_H>200 GeV M.Misiak et al. 0.35 σ_{B} [X10⁴ 250 [arXiv:1503.01789] (central value increased by 300 0.3 6.4% compared to 2007 value) 0.25 400 **PRL 98, 022002** (2007) 0.2 550 0.15 900

3.8

4

 $\mathcal{B}[\times 10^4]$

4.2

3.2

3

2.8

3.4

3.6

The lower γ energy threshold, the smaller the model uncertainties in SM, but the larger background in measurement

 \Rightarrow 2 orders of magnitude smaller than b \rightarrow s γ but rich NP search potential

Many observables:

- Branching fractions
- \circ Isospin asymmetry (A_I)
- $\circ~$ Lepton forward-backward asymmetry $(\mathbf{A_{FB}})$

•

```
⇒ Exclusive (B \rightarrow K^{(*)}l^+l^-), Inclusive (B \rightarrow X_s l^+l^-)
```


 $R_{\rm K}^{\rm \, SM}$ = 1, $R_{\rm K^*}^{\rm \, SM}$ = 0.75 (photon pole !)

Angular analysis of $B_d^0 \rightarrow K^* l^+ l^-$ decays

 $\circ~$ Final state described by q^2 = m_{11}^2 and three angles Ω = $(\theta_{1},\,\theta_{K},\,\phi)$

 $\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_\ell \\ - F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi \\ + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi \\ + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \\ + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi \Big]$ $\circ F_\mathrm{L}, A_{\mathrm{FB}}, S_\mathrm{i} \text{ sensitive to } C_7^{(\prime)}, C_9^{(\prime)}, C_{10}^{(\prime)}$

Angular analysis of $B_d^0 \rightarrow K^* \mu^+ \mu^-$ decays [arXiv:1512.04442]

- ∘ Projections of fit results for $q^2 \in [1.1, 6.0] \text{ GeV}^2$
- $\circ~$ Good agreement of PDF projections with data in every bin of q^2

- Tension in P_5 seen with $1 \, \text{fb}^{-1}$ is confirmed
- Local deviations of 2.9σ and 3.0σ for $q^2 \in [4.0, 6.0]$ and [6.0, 8.0] GeV²
- $\circ~$ Naive combination of the two gives local significance of $3.7\,\sigma$

Test of lepton universality using $B^+ \rightarrow K^+ l^+ l^-$ decays arXiv:1406.6482

◦ Ratio of branching fractions of $B^+ \rightarrow K^+ e^- e^-$ and $B^+ \rightarrow K^+ \mu^+ \mu^-$ sensitive to lepton universality

$$R_{K} = \frac{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{d\Gamma[\mathcal{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})]}{dq^{2}} dq^{2}}{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{d\Gamma[\mathcal{B}(B^{+} \to K^{+}e^{+}e^{-})]}{dq^{2}} dq^{2}} = \left(\frac{N_{K\mu\mu}}{N_{Kee}}\right) \left(\frac{N_{J/\psi(ee)K}}{N_{J/\psi(\mu\mu)K}}\right) \left(\frac{\varepsilon_{Kee}}{\varepsilon_{K\mu\mu}}\right) \left(\frac{\varepsilon_{J/\psi(ee)K}}{\varepsilon_{J/\psi(\mu\mu)K}}\right)$$

- SM prediction is $R_{K} = 1$ with an uncertainty of $O(10^{-3})$
- Measurement relative to resonant $B \rightarrow J/\psi K$ modes

Test of lepton universality using B^+ \rightarrow K^+ l^+ l^- decays

 R_{K} : ratio of branching fractions for dilepton invariant mass squared range $1 < q^{2} < 6 GeV^{2}/c^{4}$

• The combination of the various trigger \gtrsim channels gives: $R_{K} = 0.745^{+0.090}_{-0.074}(stat) \pm 0.036(syst)$

 $\circ~$ Most precise measurement to date is in disagreement with SM at 2.6 σ level

 $\Rightarrow B(B^+ \rightarrow e^+ e^- K^+) = (1.56^{+0.19}_{-0.15}(stat) {}^{+0.06}_{-0.05}(syst)) \times 10^{-7}$ compatible with SM predictions

Lepton Flavor Non-Universality ? effect is in $\mu\mu$, not ee

uncertainties from f_B and $|V_{ub}|$ can be reduced to B_B and other CKM uncertainties by combining with precise Δm_d

2HDM (type II):
$$B(B \rightarrow D\tau^+ \nu) = G_F^2 \tau_B |V_{cb}|^2 f(F_V, F_S, \frac{m_B^2}{m_{H^+}^2} \tan^2 \beta)$$

uncertainties from form factors F_V and F_S can be studied with $B \rightarrow D l \nu$ (more form factors in $B \rightarrow D^* \tau \nu$)

Event reconstruction in \mathbf{B} \rightarrow \tau \nu

$\mathbf{B} \rightarrow \tau \nu \text{ status}$

Dollo II	Statistical	Systematic	Total Exp	Theory	Total
Delle II	(reducible, irreducible)				
$ V_{ub} B \rightarrow \tau \nu$ (had. tagged)					
711 fb ⁻¹	19.0	(7.1, 2.2)	20.4	2.5	20.5
5 ab ⁻¹	7.2	(2.7, 2.2)	7.9	1.5	8.1
50 ab^{-1}	2.3	(0.8, 2.2)	3.2	1.0	3.4
$ V_{ub} B \rightarrow \tau \nu$ (SL tagged)					
605 fb^{-1}	12.4	(9.0, +3.0)	$^{+15.6}_{-16.1}$	2.5	$^{+15.8}_{-16.2}$
5 ab ⁻¹	4.3	(3.1, +3.0)	$^{+6.1}_{-7.2}$	1.5	+6.3 -7.3
50 ab ⁻¹	1.4	$(1.0, \frac{+3.0}{-4.8})$	+3.4 -5.1	1.0	+3.6 -5.2

 $R(D^{(*)}) = \frac{B \rightarrow D^{(*)} \tau \nu}{B \rightarrow D^{(*)} l \nu}$

Babar and Belle measurements hint to deviation from SM

BaBar (arXiv:1303.0571) observes a 3.4 σ excess over SM expectation ''This excess cannot be explained by a charged Higgs boson in the 2HDM type II''

$\underbrace{\mathbf{B} \rightarrow \mathbf{D}^{(*)} \tau \nu \text{ at Belle}}_{\text{(with hadronic tagging)}}$

[arXiv:1507.03233]

projections for large M_{miss}^2 region, $N(D \tau \nu) \sim 300$, $N(D^* \tau \nu) \sim 500$

$B \rightarrow D^{*+} \tau \nu \text{ at } LHCb$

[arXiv:1506.08614]

$$R(D^*) = \frac{B(\overline{B}^0 \to D^{*+} \tau^- (\mu^- \overline{\nu}_\mu \nu_\tau) \overline{\nu}_\tau)}{B(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu}_\mu)}$$

(Fajfer et al 2012)

 $363,000 \pm 1,600$ events in D^{*}µv sample $N(D^* \tau v)/N(D^* \mu v) = (4.54 \pm 0.46)\%$

R(D*)

Summary for $B \rightarrow D^{(*)} \tau \nu$

 \Rightarrow more measurements to come, more observables (τ polarization...)

Exotic states

definition of exotic: very different, strange, or unusual

''exotics'': new states of matter beyond the simple quark picture (tetraquark mesons, pentaquark baryons, glueballs on hybrid states $q \, \overline{q} \, g$) short-lived $\sim 10^{-23}$ s ''resonances'' whose presence is detected by mass peaks and angular distributions showing the presence of unique J^{PC} quantum numbers

Exotic states in B decays

B mesons decay with a $\sim\!10^{-3}$ probability to $c\,\overline{c}$ and $K^{(*)}$

- ⇒ reconstruction with low bckg ⇒ J^{PC} from angular analysis
- Many charmonium states studied this way many exotic states also: X(3872), Z(4430)...

⇒ charged charmonium state must be exotic: ccud content
∘ challenged by BaBar: explanation in terms of K^{*}'s[arXiv:0811.0564]
∘ Belle (re)analysis using full amplitude fit: [arXiv:1306.4894]

$$\begin{split} M &= 4485 \, \pm 22 \, {}^{+28}_{-11} \, MeV \, , \, \Gamma = 200 \, {}^{+41}_{-46} \, {}^{+26}_{-35} \, MeV \\ J^P &= 1^+ \, favored \, over \, the \, 0^- \, , \, 1^- \, , \, 2^- \, and \, 2^+ \\ (by \, more \, than \, 3\,\sigma) \end{split}$$

projection of the fit results with K^{*} veto

[arXiv:1404.1903]

in $B \rightarrow \psi' \pi^- K^+$

Argand diagram: clear and large phase change

 $M = 4475 \pm 7 \stackrel{_{+15}}{_{-25}} MeV, \ \Gamma = 172 \pm 13 \stackrel{_{+37}}{_{-34}} MeV$ J P is determined unambiguously to be 1 $^{+}$

 \Rightarrow Z⁺(4430) appears to be viable exotic tetraquark

<u>Summary</u>

- $\circ~$ Few results on CP violation and rare decays in B sector covered in this talk... but much more in B decays, also in charm, charmonium, bottomonium, light Higgs, τ , kaon sectors...
- $\circ~$ Almost all analyses of LHCb run I (3 $fb^{-1})$ completed...
- Definitely not only complementary, but competion between (super) B-factories and LHCb:
 - for the expected: results on $B_{(s)} \rightarrow \mu \mu$, $B \rightarrow K^* \mu \mu$, $B_s \rightarrow J/\psi \phi$, γ angle...
 - for the less expected: results on $|V_{ub}|$, $D^* \tau v \dots$

2000 - 2010 decade : B-factories era

\Rightarrow experiments designed for β extraction !

2010 - 2020 decade : LHCb era

Integrated Luminosity (1/fb)

2020 - 2030 decade : LHCb-Belle II era ?

Mixing-induced CP violation

Remember $B^0 \to J/\psi\,K^0_S$:

Interferes with

Mixing-induced CP violation

What about $B^0 \rightarrow \gamma K_S^0 \pi^0$?

Interferes with right handed component of

In SM mainly $B^0 \to K^0_S \pi^0 \gamma_R$ and $\overline{B}{}^0 \to K^0_S \pi^0 \gamma_L$ $K^0_S \pi^0 \gamma$ behaves like an effective flavor eigenstate, and mixing-induced CP violation is expected to be small $S \sim -2(m_s/m_b) sin(2 \, \varphi_1)$

time-dependent decays rate of $B \rightarrow f_{CP} \gamma$ S and A: CP violating parameters

In SM, the photon from $b \rightarrow s \gamma$ is (mostly) lefthanded (polarized). \Rightarrow Mixing induced (time-dependent) CPV does not occur in $B \rightarrow f_{CP} \gamma$

SM: $S_{CP}^{K^*\gamma} \sim -(2m_s/m_b)\sin 2\beta \sim -0.04$ Left-Right Symmetric Models: $S_{CP}^{K^*\gamma} \sim 0.5$ [D. Atwood et al, PRL 79, 185 (1997)]

<u>CP violation in B \rightarrow K^* \gamma</u>

Aim to measure the time-dependent CP asymmetry in $B \to K^*(K^0_S \pi^0) \gamma$

- \circ Select $B^0\!\rightarrow\!K^*\gamma$ events with $K^*\!\rightarrow\!K^0_S\pi^0$ and $K^0_S\!\rightarrow\!\pi^+\pi^-$
- \circ Get rid of B⁰→K^{*}π⁰ background
- $\circ~$ Measure time by intersecting the K^0_S with the beam line

$B \rightarrow D^{(*)}K^{(*)}$ Dalitz analysis

Reconstruction of three-body final states D^0 , $\overline{D}^0 \rightarrow K_S \pi^+ \pi^-$

Amplitude for each Dalitz point is described as:

$$\overline{D}^{0} \rightarrow K_{S} \pi^{+} \pi^{-} \sim f(m_{+}^{2}, m_{-}^{2}) D^{0} \rightarrow K_{S} \pi^{+} \pi^{-} \sim f(m_{-}^{2}, m_{+}^{2})$$

 $B^{+} \rightarrow (K_{S} \pi^{+} \pi^{-})_{D} K^{+} : f(m_{+}^{2}, m_{-}^{2}) + r_{B} e^{i(\delta_{B} + \gamma)} f(m_{-}^{2}, m_{+}^{2})$

Simultaneous fit of B⁺ and B⁻ to extract parameters r_B , γ and δ_B Note: 2 fold ambiguity on $\gamma: (\gamma, \delta_B) \rightarrow (\gamma + \pi, \delta_B + \pi)$

GGSZ LHCb Results [arXiv:1408.2748]

Experiment by experiment

Could it be due to new physics ?

- $B \rightarrow \pi l \nu$ is a purely vector current, whereas $B \rightarrow X_u l \nu$ is V A
- Adding right-handed current (V+A), increases vector current but decreases axial-vector current

A negative right-handed current can reduce tension between those two results

New measurements neeeded, with different approaches also