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Recap: role of prior

Background rejection versus Signal efficiency

Cannot answer.
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Need to know the fraction of b-jets in my sample, that is the prior p(b-jet).



Frequentist too believe iIn Bayes theorem

Application of Bayes’ theorem to random events for which prior information is
known is the most powerful way of exploiting all the available information.

Knowledge of the probability distribution p(x|m) and the prior probabilities for m
(prior to the observation of x) is very powerful.

It allows to use the observation of x to update the prior knowledge and therefore
determine the posterior probability p(m|x), that is the “backward process”
probability - which offers all information one might possibly want on m



Sayesian Inference

Thanks to the prior in one determines p(m|x): the posterior probability density for
the theory given the data.

Once p(m|x) is known, the rest is

Straighforward: g 95% prob. interval
= +——)

0.6
Point estimate Mean of p(m|x), which 2 o5
minimizes the variance of m. e o
Alternatively, value mpest that s N
maximizes p(m|x). But it depends on 5
metric: differs if parameter is m or any § v
function f(m). o

M min TMmax

Interval estimate interval (not unique) Parameter value
of m values such that Highest posterior density

/ o p(m|z)dm = a (e.g., a = 95%)
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What if priors aren’t known or cannot be defined

 Frequentist: give up on getting p(m|x). Revert to an estimate based only on data
and the assumed model, not on prior knowledge.

- Bayesian: stick to Bayes’ theorem by assuming a prior

Both options are though businesses, as priors do carry information. E.g, the
posterior p(mo|X) is zero for any value m=mo for which p(mo)=0 regardless of what
are the observed data

Because HEP folks expect objective/repeatable results that are free from
subjective input and can be interpreted in terms of coverage (more later), many
Bayesian analyses make an effort toward using priors that have minimal influence
on the result.



Flat priors

Uniform (“flat”) priors are commonplace in HEP papers. “Knowing nothing about
a parameter, | assign equal probabilities to all its possible values” (the
noninformative argument)

Sounds intuitively plausible and has attractive practical features: it’s easy and
the parameter value that maximizes the posterior density is the same that
maximizes the likelihood.

However, flat priors have serious issues: (i) cannot be normalized without a
cutoff (ii) puts most of belief at infinity (iii) the noninformative argument is ill-
defined, as any pdf can be transformed into a flat pdf and you’ll get a different
answer if the prior is flat in m, 1/m, log(m) etc..

All of this exacerbates with increasing dimensionality of the space of parameters

Lot of thinking (Jeffrey’s most notably) went into pursuing priors containing “as
little information as possible”, so that the posterior is dominated by the data.



A better approach - assessing sensitivity to priors

Convincing support of Bayesian results
Is typically achieved through analysis’
sensitivity studies.

T. AALTONEN et al.

TABLE V. Summary of the sensitivity study. The 68% credi-

bility interval on ,Bf/ ¥ is given for the unconstrained result and
when 2|I'},| is constrained to its SM prediction.

Variation ConstrainedUnconstrained
' TENT ) Default [0.09,032] [0.11,0.41]
Investlgate thg senS|t.|V|ty of one’s Flat sin2 /%4 008031 [0090.37]
analysis on prior choices by, e.g., Flat cosd [0.09,033] [0.10,0.43]
' ' Flat cosd) [0.09,0.32] [0.11,0.41]
!ool_qng at the median expected result§ Previous thres together 007.031] [0.09,039]
In simulated events, repeat the analysis Flat in amplitudes [0.09,032] [0.11,0.41]

with various choices for priors or on Gaussian mixing-induced CP violation [0.09,0.34]

smaller subsets of the sample.

Example from PRD 85, 072002 (2011)

Sensitivity analysis provides essential information on how much of the final result
p(m|x) is driven by data (p(x|m)) and how much by the prior p(m) and is therefore a
very desirable “calibration” of any Bayesian result.



What Can Be Computed without Using a Prior?

Not P(constant of nature | data).

1) Confidence Intervals for parameter values, as defined in
the 1930°s by Jerzy Neyman.

2) Likelihood ratios, the basis for a large set of techniques
for point estimation, interval estimation, and hypothesis

testing.

These can both be constructed using the frequentist
definition of P.



The likelihood



Likelihood function

Model p(x|m) evaluated at fixed data. Essential in any inference

- probability density function p(x|m)_of observing generic data x, given the
unobservable value of the parameter m.

 Then take actual sample of observed data xo and evaluate p(xo|/m)

 The likelihood L(m) = p(xo|m) is a function of parameter m given your data

Connected to probability for observing data x for different choices of the value
of the parameter m, not the probability that m has some value given the data.

Likelihood is a complete summary of the data information relevant to the
estimate at hand. ldeally should be published as is.
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A likelihood is not a pdf

The probability density function p(x|m) is a parametric function of the observable
data x.

The likelihood function L(m) is a function of the unobservable parameter m.

The pdf, a probability density of the data
(random variable), should be normalized to unity p(x|m)da) =1
over the domain of the random variable. X

The likelihood, a function of the parameter m, / p(fL‘o ‘m)dm —7
obeys no specific normalization. M

In addition, the function values L(m) are invariant under reparametrization of m into

f(m): L(m) = L[f(m)]. No Jacobians here, reinforcing the notion that L(m) is not a pdf
for m.

11



Maximum of the likelihood

The likelihood expresses the probability of observing the data you observed as a
function of the parameter value m.

Given some data, parameter values miow that make L(m) small are disfavored: it
would be unlikely for nature to generate that set of observed data, had the true value
of m been miw. Conversely, values mnigh that make L(m) large are favored

HEP usually deals with repeated observations x that are independent and identically
distributed. If the likelihood for a single observation x’ is

L(m) = p(x’|m),
the likelihood for the whole experiment is the product of the single-event likelihoods

L(m) = p(x|m)

12



—Xxample — exponential

Decay process. Assume exponential model. Pdf

p(t]7) = le—t/T Probgbility den§ity of
T survival after time t

Then we observe N decay times and infer the lifetime by maximizing the likelihood.

)7 Likelihood of
Lk(T) — P(tk|7) — ;6 observation of t = 1k

N4 1\ ZN £ Likelihood of
L(T) = H ;e_t’“/T = <—> exp | — k? observation of the full

4 data set

13



—xample - exponential (cont’d)

As high values of the likelihood are associated with favored values of the
unknown parameter (lifetime tau here), set to zero derivative

dz,(:) ) _;tk(l/T)Nﬂ - N(1/7)"" exp( Zletk)

N
A A tau corresponding to the average of
dL(T)/dT = U implies 7 = Z tk/N observed decay times maximizes

k=1 the likelihood
Had | framed my inference in terms of natural width, I' = 1/t

N N
L) =T" exp (r > tk) [=N/> te)=1/7
k=1 k=1

Because L is invariant under parameter transform, its maximum too is so. y



—Xxample — Poisson

J

Model: Poi -distributed signal back d. : .
odel: Poisson-distributed signal, no backgroun p(jlp) = 76 b= L(u)

Observe j = 5. What’s the maximum likelihood estimate for my Poisson mean?

T
p(J\u)—ﬁe -

(Discrete) function of data

Given observation j, the ML estimator of the mean rate of success pis i = j -



llustrated

Model: Poisson-distributed signal, no background.

Observe | = 5.
1_
i Observed
0.8 Value J = 9
0.6
0.4F
0.2
N "5 10 15 20 25 30

j [Berger] 16



Poisson illustrated

Model: Poisson-distributed signal, no background.

Observe | = 5.
0'6§= Observed
0.5 Value j =5
U = 0.5 -
Low 04:—
likelihood g 3FL
0.2F
0.1+ Y
N %5 10 15 20 25 30

[Berger]
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Poisson illustrated

Model: Poisson-distributed signal, no background.

Observe | = 5.
0'6§= Observed
0.5 Value j =5
U = 0.5 -
Low 0.4:—
likelihood @ 3Fl-
0.2F
0.1+
:_I_.l PRSI (ST ST TS (N ST SR N
% 20 25 30

j [Berger] 18



Poisson illustrated

Model: Poisson-distributed signal, no background.

Observe | = 5.
0-6 : Observed
0.5 Value j =5
©=0.9 -
Low 0.4 :—
likelihood g 3FL
0.2F
0.1F
[N. Berger] [Berger] 19




Poisson illustrated

Model: Poisson-distributed signal, no background.

Observe | = 5.
0.6

0.5

t=0.9

Low 0.4
likelihood (3
0.2

0.1

II]lllIllllIlllllll]llll[]lll”l

Observed 0.18F

- 0.16}
Value j =9 o 1ok

Likelihood
=09 0.08}

. 0.06F
ngh 0.04;—
likelihood :

................

of ufory =5

=

[Berger]66
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—xtended likelihood

Sometimes the number of events of the sample N is itself part of the inference,
e.g., measure a production cross sections.

The result of the experiment is N, X4, X,....Xn, it is convenient to use the extended
likelihood, where addition of a Poisson term (due to total event count) properly
accounts for the fluctuations on N

VN N
L(v,m) = me_y Hp(l"z';m)
‘ i=1

Besides the uncertainties in the proportions of each class of events in the
sample, the Poisson term accounts for the global fluctuation on N

21



—stimators

The maximum likelihood is an estimator.

Estimator — a function of the data e(x) used to provide an estimate (“a "™
measurement”) of a parameter.

Estimators are functions of data
(random variables), hence
estimators are random variables
with their own probability
distributions. An estimator’s
performance depend on the
properties of its distribution.

consistent

inconsistent

The maximum likelihood estimator is optimally suited for most HEP applications anc

we won't discuss other estimators. 2






Information on a parameter brought by data

(If it exist) the Fisher information of an observation x on the parameter m,
related by the likelihood p(xIm) = Lx(m) is

O log (L, ° Olog(L,.(m)) dlog(L.(m
_ i v J
1 parameter many parameters

If (i) the possible values of x do not depend on m and (ii) the likelihood is
twice differentiable and derivatives in m and integrals in x commute

0° log(L.(m)) ]

(9m7;mj

Le(m))i; = —E [

See Eq 28 in https://arxiv.org/pdf/1007.1727.pdf for a convenient approximation of the Fisher’s information

As for N observations the Fisher information is proportional to N, the precision of
cannot improve faster than 1/sqrt(N)

24
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Minimum variance bound

An attractive property of an estimator is its precision (variance). Can it be made
arbitrarily small at given number of observations N?

N A 9y . (1+db/dm)? _ (1+ db/dm)?
No. Var(m) = E[(m — E|m|)”] 2 ) S Lm

where m estimator of m, b = E[m] - m is its bias and Ix(m) is the Fisher information

f inequalities become equalities, m reaches minimum variance: efficient estimator.
mplies that once m is known, no further information is brought by complete

Knowledge of all data x.
See Eq 28 in https://arxiv.org/pdf/1007.1727.pdf for a convenient approximation of the Fisher’s information

Under weak conditions, the maximum likelihood estimator is asymptotically (N-> )
consistent, efficient, and normal (i.e., has Gaussian uncertainties).

NB: does not apply if the range of the observations or the dimensionality of the

likelihood depend on the parameter being estimated. 26


https://arxiv.org/pdf/1007.1727.pdf

Maximum likelihood variance (“fit error”)

The minimum variance bound offers an approximated estimate of the variance as
the curvature (2nd derivative) of the log-likelihood at its maximum.

L:(m)]ij = —E [82 lgiif;im))]
V(i) ~ —1/E {aai;lL]

N 2nL\ " ’
- (9m2 m=m

This is the symmetric uncertainty MINUITS computes after MIGRAD/HESSE
Accurate only for linear problems (Gaussian likelihood).

No guarantee that for N finite the estimator has reached minimum variance. The

number of observations needed to approximate asymptotic regime depend on
the proiblemat hand. If in doubt check with toys. 27



Statistical uncertainty

Repeating our experiment many times, 68.3%
of the resulting [m-o, m+a] intervals include the
true value of the parameter

This differs from stating “in 68.3% of the
experiments the true value is the [m-o, m+a]
range” or “there is 68.3% probability that the
true value is in the [m-o, m+ag] range”

Language is subtle and important. The true
value is not random. Cannot move around or
have a probability.

Only data, that is the interval extremes, are
random and fluctuate around the true value.

15 20

Simulation number
10

3

1.0 1.5 2.0 25 3.0

Interval

£ 95.5% confidence intervals §

measurements of a true 3
value of 2.0 :

28




Coverage

The capability for an inference procedure to yield uncertainties that cover the true
value with the stated confidence level is a fundamental requirement in frequentist
inference.

It is also generally desired/expected in HEP (even in Bayesian measurements).

Coverage is a feature of the procedure used, not of a single measurement.

The single interval resulting from a specific measurement may contain or not the
true value.

Like in linear algebra one defines a vector as an element of a vector space with
some properties, a confidence interval is an element of a confidence set of
intervals that have coverage under repeated sampling [Cousins]

29



Coverage

A property of the procedure, not of the single measurement.

....rnght, right, wrong,
right, right, right, right, right
wrong, right, right, right, right,
right, right, right, right, right,
right, right ....

(07 min, 87 mad! Y0



cases per 1000 children

10 implies that ~1/3 of points should be off!

One-sigma corresponds to 68.3% confidence level.

The scatter of points should bring roughly one out of three points farther than the

error bars of the others.

Autism Spectrum Disorder Prevalence (USA)

10
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What is the p-value plot? What is the local p-value?
What is the look-elsewhere-effect”?

2011 + 2012 Data

\s=7TeV: |Ldt=4.6-48fb"
\s =8 TeV: |Ldt=5.8-5.9 fb”

ATLAS Preliminary

300 400 500 600
my [GeV]

32



What does the “Brazil plot” mean”? What is CLs"”

E I I ' I I
o ATLAS Preliminary 2011 + 2012 Data
© 10 —obs. \s=7TeV: |Ldt=4.6-48%" =
s [ -—Exp \s=8TeV: |Ldt=5.859f" -
=t . [ +1o -
% B 20 N
- i _
O
A o Rttt -
p) - _
(@)} - N
1071 - E
- ClLs Limits a
100 200 300 400 500 600

m, [GeV]



Confidence intervals

34



Confidence intervals

Given a model p(x|m), with

- unknown value of the parameter m, and

- known observed data xo,

The confidence interval construction is a mathematical procedure to address the
question:

What are the values of m for which the observed data xo is among the least
extreme of all possible values of x?

35



Confidence intervals

What are the values of m for which the observed value xo Is among the least
extreme possible values of x?

To define “extreme”, need an ordering principle. Rank the values of x for each
possible value of m. High rank means not extreme (likely to be included in the
interval). Low rank means extreme (likely to be outside of the interval).

With that ordering, accumulate the values of highest-ranked (i.e., less extreme)
values of x until you reach a predetermined fraction of x probability. Such fraction
is the confidence level (CL). Typically 68%, 95%...

Given a model p(x|m), data xo, an ordering, and a CL, the confidence interval [m1,
m2] includes those values of m for which xo aren’t “extreme” at the chosen CL

For example: [m1, m2 | determined at 68% CL includes the values of m for which
the observed data xo belongs to the least extreme 68% values of x 36



One-sided, two-sided.

f(|6o) If “extreme” is defined as low-valued x, start

/l« accumulating from high values of x. Yields

one-sided interval (upper limit on m)

f(=|6o) If “extreme” is defined as high-valued x, start

accumulating from low values of x. Yields one-
sided interval (lower limit on m)

f(z[0o) If “extremes” are high- and low-valued x, take

the smallest central quantile. Yields central
interval (lower limit on m)

T

A

(simplified interpretation applies only to one-dimensional x, and p(x|m) is such
that higher values of m imply higher average x)

37



CL

The confidence level is usually chosen to match the standard thresholds 68.3%

(10) 95.5% (20) etc. Define also the lowest-ranked a = 1- CL fraction of the most
extreme values

Convenient practical trick: The endpoints of a central confidence interval at given

CL can be determined from one-sided confidence intervals (lower and upper
limits) at CL/2:

« A CL=84% upper limit m2 excludes values of m for which xo belongs to the set
of lowest-valued x that has 16% (1-CL) probability

« A CL=84% lower limit m1 excludes m values for which xo belongs to the set of
highest-valued x that has 16% (1-CL) probability

Then [m+, m2] includes the central 68% fraction of x values ordered from high to

low: a 1-(16%+16%) = 68% central confidence interval N



Confidence intervals

Confidence intervals for binomial parameter p
Directly relevant to efficiency calculation in HEP

Let Bi(n,, | n;.;, p) denote binomial probability of n_, successes
In n, trials, each with binomial parameter p:

Ny 0
non! (ntot_non)!

Bi(N,, | Ny P) = "on (1 — p)" tot = Mon)

In repeated trials, n_, has mean n,_; p and

rms deviation /n,, p (1 —p)
With observed successes n_,, the M.L. point estimate p of p is
6 = non / ntot "

What confidence interval [p,,p,] should we report for p?

39



Confidence intervals

- W oW e ) -V e W o - auEEVvFaeavVavVaeavTeVleWeaVea e e ‘ - - -
AN U o VWO U ol VC U w w \J U C « VYV C U w V C

uncertainty?

It is tempting to replace p = 0.30 into 6 = (1/nwet)yP(1-p) and obtain the interval
[p1! p2] — ﬁ + 6

This is not a proper confidence interval.

It does not follow the proper logic of frequentist inference: in the construction of
the interval each o should be consistently associated with each p value, while
here | am using the same o for all p values in the interval.

The flaw is manifest for the cases in which non = Niot Or Non = 0.

[Cousins] 40



Confidence intervals

Confidence intervals for binomial p (cont.)
Suppose n, =3 successes in n, =10 trials.

LARLLS A RS LAl R UL LAl RS B YT 55—y
0.25f ] E \ E
| ey s
0.2¢ ) _ 4.5
B D= 3/10 1 F .
0.15} PmL - 4r .
: / ] : // -2In L (p) .
o1/ ] 3.5 -
0.05- / \ - 3
bt e ] p 2.5 ;},.,. (PP PP PP PETTE PR NP PPEP PRTPY Poames p
OO 0.1 02 03 04 05 06 0.7 08 09 1 0 0102 03 04 05 06 0.7 08 09 1

Let’s find exact 68% C.L.* central confidence interval [p,,p,]-
Recall shortcut above for central intervals:

Find lower limit p, with C.L. =1 - (1 — 68%)/2. = 84%
l.e., Find p, such that Bi(n_, <3| n,,=10, p,) =84%

Find upper limit p, with C.L. = 84%
l.e., Find p, such that Bi(n_, > 3 | n,,,=10, p,) =84%



Confidence intervals

84%
Ny, =3, N,=10. —
Find p, such that 035 Bi(ngy | Py
Bi(n,, < 3| p,) = 84% o pr=0.142
Bi(Noy > 3 | py) = 16% 16%
(lower limit at 84% C.L.) . , i ‘
Solve: p, = 0.142 0.

0.05 I n
And find p, such that 23 48 6 7 6 910
Bi(n_. > 3| p,) = 84%
Bi(n,, <3| p,) =16% Bi(n,, | p,) 814%
(upper limit at 84% C.L.) 025 p,=0.508" ‘
Solve: p, = 0.508 02

o1sf  16%
Then [p4,p,] = (0.142, 0.508) o
Is central confidence interval _
with 68% C.L. Same as " | | .
Clopper and Pearson (1934) b+ 23 4 5 6 7 8 8 d0

Poisson example: Fig. 3a,b; R. Cousins, Am. J. Phys. 63 398 (1995) DOI: 10.1119/1.17901

Bob Cousins, Stats in Theory Il, Feb 2017

17
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Neyman construction

J. Neyman came up with a mathematically rigorous procedure
that allows constructing confidence intervals with the desired
level of coverage

Jerzy Neyman (1894-1981)

X—OQutline of a Theory of Statistical Estimation Based on the
Classical Theory of Probability

By J. NEYymMAN

Reader in Statistics, University College, London

(Gommunicated by H. Jerrreys, F.R.S.—Received 20 November, 1936—Read 17 June, 1937}
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Neyman construction illustrated

Prior to looking at data, for each possible true value of parameter m, consider
p(x|m). Its shape can vary as a function of m.

VAR
A N

p(x|m)

[Cranmer]

44



Neyman illustrated |

Take a specific value mo of the parameter

p(x|mo)

45



Neyman illustrated |l

Use p(x|mo) to define an acceptance range in x, such that p(x € range | mo) = 68%.

[Cranmer] 46



Neyman illustrated Il

The definition of the acceptance range is not unique
The criterion to choose of the region is chosen is the ordering rule

The rule defining the order of accumulation of the elements along x until the

desired amount of probability, corresponding to the chosen confidence level (68%,
in our example), is accumulated.

[Cranmer]



Neyman illustrated V

Derive the acceptance region for every possible true value of the parameter m

p(z|m)

A

[Cranmer]

48



Neyman illustrated VI

This defines a confidence belt for m.

p(z|m)

o

[Cranmer] 49



Neyman illustrated VI

Then you do your analysis on data, and observe a value xo. The observed value
iIntersects the confidence belt. The union of all values of m for which acceptance
ranges are intersected by the measurement defines the confidence interval [m_(x)

m.(x)] at the 68% CL for the parameter. Note that the extremes of the interval are
random variables (functions of data x)

™m

//[/ =
= :

m
Mo
/ *
£
In repeated experiments, the Coonfidence intervals will have different boundaries, but
68% of them will contain the (unknown) true value of the parameter m

[Cranmer]

50



Why does it work?

Make a measurement xo and determine the corresponding confidence interval, For
every true value m of the parameter, say my, included in the interval, 68% of the
measurements would be in the acceptance region. Each of the measurements will
lead to a confidence interval that contains mz2 . Hence, the interval contains the true
value with 68% probability, m € [m_, m,] at the 68% CL.

“projection of the
acceptance region
onto the space of

(105 T— parameters” — a
set-theory union, not
m_ lllllllllllllll : an integral.

[Cranmer] 3



Toy example

Bags of various classes: each class contains a different fraction of white balls
(1%, 5%, 50%, 95%, and 99%). Extract 5 balls from a bag and infer to which
class the bag belongs

True fraction of white balls

g ClassA=1% | Class B =5% |Class C =50% |Class D =95% | Class E = 99%
3 5 100 | 34107 | 31% | 77.4% | 95.1%
o 4 5410 | 3105 | 15.6% | 204% || 4.8%

o 3 105 | 01% || 313% | 21% | 0.1%

E > 01% | 21% || 31.3% || 01% | 10s

: : 4.8% 15.6% || 3105 | 510
> 0 3107 | 10-10

52



Note

For simplification purposes, examples discussed have one-dimensional space of
parameter and one-dimensional space of observables and p(x|m) such that the
higher the m the higher the x.

m

/ .
v :
/ x

To

In general, x and m are X and m and they need not to have same ranges, units, or
dimensionality

53



Additional material
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Confidence intervals

Gaussian pdf p(x|u,c) with o a function of u: 6 =0.2 n

1 _x_ 2 ZGZ 0.25:"'1"'1"'1"’1'"IE """""""""""""" ]
p(x],0) = e~ (X TH)Y/ :
V271G? 02 A E
_ p(xlp, ) N\ ]
o(p) = (0.2) A\ E
. p-10 0 / ' \'\ g
p(x|u,c) with u=10.0, =0.2: o.1E / \\ 3
0.05 / N =
Suppose X, = 10.0 is observed. A L N 1

2468101214161820

What can one say about p ? =10.0

Minimum x2 for a single observation of 10, yields 1 = 10. Then
estimate 6 =02 x[1=0.2x10=2.0

Therefore p + 6 = [8.0, 12.0]

95



Confidence intervals

Gaussian pdf p(x|u,c) with o a function of u: 6 =0.2 n

1 _(x _u)Z/ZGZ
X|p,0) = e
o(u) = (0.2) p
p(x|u,c) with p=10.0, c=0.2:
Suppose X, = 10.0 is observed.
L) = — e (x—w)?/2(02p)
J271(0.2p)?
L (n) for observed x, = 10.:
Uy = 9.63

What is confidence interval for p?

0_25111!11 LN I L B B N A B S LA B B O B | LIS B B O B B N N B |

0.15

0.25111111 LN B B N N B B N B N | LS N B R R LI B B O B B N S R |

0.2

0.2+
0.15}
0.1-

0.05+

1

o6



Confidence intervals

Observed x, = 10.0.

Gaussian pdf p(x|u,c) with o a function of u: 6 =0.2 n

Find p, such that 84% of p(x|u,,6=0.2u,) is
below x, = 10.0; 16% of prob is above.
Solve: p, =8.33.

[14,0] is 84% C.L. confidence interval
u, is 84% C.L. lower limit for p.

Find p, such that 84% of p(x|u,,6=0.2,) is
above x, = 10.0; 16% of prob is below.
Solve: p, =12.5.

[ oo,u,] is 84% C.L. confidence interval
W, is 84% C.L. upper limit for p.

Then 68% C.L. central confidence interval is

[“1 su2] = [83371 25]
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LEE at Fermilab, the “Oops-Leon” discovery

Leon Lederman in the '60-'70 led many of the
key experiments that laid the foundations of
the standard model.

; Observation of High-Mass Dilepton Pairs in Hadron Collisions at 400 GeV
In 1976, Lederman’s group SO o7 T bt e

D. C. Hom, L. M. Lederman, H, P. Paar, H, D. Snyder, J. M. Weiss, and J. K. Yoh

announced the Columbia University, Now York, New York 10027+
observation of a new and

particle produced in T P ions satotes soror, o s omtpy
collisions of protons on and

Beryl I U m and decayl ng State University of New York atDS.tol:/zlj.: gofloe)llea:nStony Brook, New York 11794 *

: : . (Received 28 January 1976)
Into e+ e- pairs, with a
We report preliminary results on the production of electron-positron pairs in the mass

mass Of abo u‘t 6 Gev range 2.5 to 20 GeV in 400-GeV p-Be interactions. 27 high-mass events are observed in

the mass range 5.5-10.0 GeV corresponding to o=(1.240.5) x10™3° em? per nucleon. Clus-
tering of 12 of these events between 5.8 and 6.2 GeV suggests that the data contain a new
resonance at 6 GeV.
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The “Oops-Leon” particle

This was published and provided a very strong 0> ‘."
candidate for the Upsilon, the bound state of a al j\-
(then still unobserved) fifth quark. h\ w
\
IH
More data did not confirm the finding. 1N l] m r
N 40

6 7 8 9
Invariant ee mass
—‘w

The erroneous first claim has been later tracked
down to a mistake in the statistical evaluation of

a linear A dependence.” We have studied the
probability for a clustering of events as is ob-

the significance of the signal, which did not served here to result from 2 fluctustion in a
smooth distribution, e.g., Eq. (3). To avoid the
properly account for the LEE. difficult problems involved in the statistical theo-

ry associated with small numbers of events per
resolution bin, a Monte Carlo method was used.
Histograms were generated by throwing events
according to a variety of smooth distributions,
modulated by the mass acceptance, over the
mass range 5,0 to 10,0 GeV, Clusters of events
as observed occurring anywhere from 5.5 to 10.0
GeV appeared less than 2% of the time.® Thus
the statistical case for a narrow (< 100 MeV) res-
onance is strong although we are aware of the

need for confirmation, These data, at a level of
DR ————msana_—
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A couple of years later, the same group

using muon pairs found the actual Upsilon
meson, at 9.5 GeV.

Nobody cared too much about the 6 GeV
fluke, which someone dubbed “Oops-

Leon” in a pun over Lederman’s and the
Upsilon’s name.

Observation of a Dimuon Resonance at 9.5 GeV in 400-GeV Proton-Nucleus Collisions
8. W. Herb, D, C. Hom, L. M. Lederman, J. C. Sens,'” H. D. Snyder, and J. K. Yoh
Columbia Unitversity, New York, New York 10027
and

J. A. Appel, B. C. Brown, C. N, Brown, W, R. Innes, K. Ueno, and T. Yamanouchi
Fermi National Accelevalor Laboratory, Batavia, Mlinois 60510

and

A, 8. Ito, H. Jostlein, D. M. Kaplan, and R, D, Kephart

State University of New York at Stomy Brook, Stomy Brook, New York 11974
(Recelved 1 July 197T)

Accepted without review at the request of Edwin L. Goldwasser under policy announced 26 April 1976

Dimuon production is studied in 400-GeV proton-nucleus collisions, A strong enhance-

ment is observed at 9.5 GeV mass in a sample of 9000 dimuon eveats with a mass m . -
> 5 GeV.
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Where is “elsewhere””?

Tenths, or hundreds, or thousands of
distributions may have been inspected, in the
same analysis or in other analyses.

Should we correct for these as well?

How large is the testing space to base our
correction on?

N(x)

N

T

3
o N ~ o] © ob
'

g 10 .
—= l — data
8

= expected background

ﬂ _____ 1)

— data

expected background _—

&@ﬂ'

|Uwhﬂ

Should we go back and correct previously published p-values when new

analyses are completed?

Guidance (consensus at the Banff 2010 Statistics Workshop):

limit the testing

space to models that are inspected within a single published analysis
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Far-out hadrons

In 1968, Art H. Rosenfeld at UC Berkeley
surveyed the searches for exotic hadrons that did
not fit the then-new static quark model.

He noted that the number of discovery claims
quite matched with the number of statistical
fluctuations expected in the data sets analyzed.

Rosenfeld blamed the large mutliple testing corrections needed to account for the
massive use of combination of observed particles to construct mass spectra
containing potential exotic excesses.

“[...] This reasoning on multiplicities, extended to all combinations of all outgoing particles and to all countries, leads to
an estimate of 35 million mass combinations calculated per year. How many histograms are plotted from these 35
million combinations? A glance through the journals shows that a typical mass histogram has about 2,500 entries, so
the number we were looking for, h is then 15,000 histograms per year. [...] Our typical 2,500 entry histogram seems to
average 40 bins. This means that therein a physicist could observe 40 different fluctuations one bin wide, 39 two bins
wide, 38 three bins wide... This arithmetic is made worse by the fact that when a physicist sees 'something’, he then

tries to enhance it by making cuts...” 62
”[Dorigo]
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Far-out hadrons

“In summary of all the discussion above, | conclude that each of our 150,000 annual histograms is capable
of generating somewhere between 10 and 100 deceptive upward fluctuations [...] To the theorist or
phenomenologist the moral is simple: wait for nearly 50 effects. For the experimental group who has
spent a year of their time and perhaps a million __dollars, the problem is harder... go ahead and
publish... but they should realize that any bump less than about 5o calls for a repeat of the experiment.”

Rosenfeld also mentions the semiserious GAME test by his colleague,
Gerry Lynch

“My colleague Gerry Lynch has instead tried to study this problem ‘experimentally’ using a ‘Las Vegas’ computer program
called Game. Game is played as follows. You wait until a unsuspecting friend comes to show you his latest 4-sigma
peak. You draw a smooth curve through his data (based on the hypothesis that the peak is just a fluctuation), and
punch this smooth curve as one of the inputs for Game. The other input is his actual data. If you then call for 100 Las
Vegas histograms, Game will generate them, with the actual data reproduced for comparison at some random page.
You and your friend then go around the halls, asking physicists to pick out the most surprising histogram in the
printout. Often it is one of the 100 phoneys, rather than the real ‘4-sigma’ peak.”

[Dorigo] 63



