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Representations of the Lorentz group

Prevequisite: 2

[n section 2, we saw that we could define a unitary operator {7(A) that

implemented a Lorentz transformation on a sealar field () via
U(A) o(x)U(A) = (A1) . (33.1)

As shown in section 2, this implies that the derivative of the field transforms

as
U(A)~ " p(x)U(A) = A 0P p(A ) (33.2)

where the bar on the derivative means that it is with respect to the argument
2 =N~ l..".
Eq. (33.2) suggests that we could define a vector field A" () that would
transform as
U(A) Jz'l”(.r)f"'(.f‘\) = A, AP(A ) (33.3)
or a tensor field B" (x) that would transform as

U(A)™'B" ()U(A) = A* A B (A1) (33.4)

Note that if B" is either symmetric, B (@) = B"'(x), or antisymmetric,
BU(x) = —=B"(x), then the symmetry is preserved by the Lorentz frans-
formation. Also, if we take the trace to get T'(x) = g,,B" (2), then, using
_r,',,,,/\"'w-\"l., = (Jpor. We find that T'(x) transforms like a scalar field.

UA)™'T(2)U(A) = T(A 1. (33.5)
Thus, given a tensor field B*(x) with no particular svnnmetry, we can write

B (z) = A" (x) + S*(x) + 1g"T(2) , (33.6)
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200 Quantum Freld Theory
where A is antisymmetric (A" = —A"") and 5" is symmetric (S =
¥y and traceless (g5 = 0). The key point is that the ficlds A*, 577,

and T do not mix with each other under Lorentz transformations.

Is it possible to further break apart these felds into still smaller sets that
o not mix under Lorentz transformations? How do we make this decomposi-
tion mto e ducible re prese ntations of {he Lorentz aroup for a field t';lT'T'_\'ill}A
. vector indices? Are there any other kinds of indices we could consistently
assien to a field? If so. how do these behave nnder a Lorentz transformation?

[he answers to these questions are to he fonnd in the theory ol group
representations. Let us see Liow this works for the Lorentz group (in fonr
space-time dimensions).

Consider a field (not necessarily hermitian) that carries a generie Lorenty,

index. 24(2). Under a Lorentz transformation. we Jiave

UGA) " oal)T(A) = L% (Mep(A 1) . (33.7)

T

where L P(A) is o matrix that depends on Ao These linite-dimensional

matrices must obev the group composition rule
LaPB ALY (A) = LY (A'A) . (3:3.8)

We say that the matrices L '.“[‘\) form o representation ol the Lorentz
£roup.

For an infinitesimal transforiuation A, = 8", + éw/',. we can wrife
U(l4bw) = I + Sdw,, M, (:33.9)

where the operators M are the gencerators of the Loventz group. As shown

in section 2. the generators obey the connmutation relations
[A1, MP7] = z‘(;;"".\/”” 1+ .-;,}) (pe—=o) . (33.10)

which specify the Lie algebra of the Loventz group.

We can identify the components of the angular momentum operator J as
g = .-1;:,,;, M and the components of the boost operator K as K; = MY,
We then find from eq. (33.10) that

l‘l',l,’,l = 1 ”,ll..lj‘. . {;.%' )
[Jis K| = +igijudls (33.12)
[K;. K| = —igijnddi « (3:3.13)

For an infinitesimal transformation, we also have

LaB(146w) = 64" + Lbw,u(S")a” . (33.14)
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Representations of the Lorentz group 207

FEq. (33.7) then becomes
[pal@), M*] = L a(z) + (S™) 4P pp(x) (33.15)

where LM = ,1(.:‘“(')" —x¥d"). Both the differential operators £/ and the
representation matrices (S7) 4 must separately obey the same commuta-
tion relations as the generators themselves; see problems 2.8 and 2.9.

Our problem now is to find all possible sets of finite-dimensional matri-
ces that obey eq. (33.10). or equivalently eqs. (33.11) (33.13). Although the
operators A" must be hermitian, the matrices (5%) ¥ need not be.

[ we restrict our attention to eq.(33.11) alone, we know (from stan-
dard results in the quantum mechanics of angular momentum) that we
can find three (2j+1) x (2j41) hermitian matrices 7. Jo. and Jy that
obey eq. (33.11), and that the eigenvalues of (say) Jy are —j, —j+1, ..., +7,
where j has the possible values [l..—E.I ..... We further know that these
matrices constitute all of the inequivalent, irreducible representations of the
Lie algebra of SO(3), the rotation group in three dimensions. Incquivalent
means not related by a unitary transformation: irreducible means cannot he
made block-diagonal by a unitary transformation. (The standard derivation
assumes that the matrices are hermitian, but allowing nonhermitian matri-
ces does not enlarge the set of solutions.) Also, when j is a half integer,
a rotation by 27 results in an overall minus sign: these representations of
the Lic algebra of SO(3) are therefore actually not representations of the
group SO(3). since a 27 rotation should he equivalent to no rotation. As we
saw i section 24, the Lie algebra of SO(3) is the same as the Lie algebra
of SU(2); the half-integer representations of this Lie algebra do qualily as
representations of the group SU(2).

We would like to extend these conclusions to encompass the fll set of
eqs. (33.11)-(33.13). In order to do so, it is helpful to define some nonher-
mitian operators whose physical significance is obscure, but which simplify
the commutation relations. These are

."‘\],. =
N =

i ;

(T~ K. (33.16)

(J; + iK;) . (33.17)

[ terms of N; and \.,T eqs. (33.11)-(33.13) become

[,"\"Y,. _-’\"'J,‘} = .f':’,_”". Ny, (33.18)
(V] N =i N] (33.19)
[N;,N]=0. (33.20)
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We see that we have two different SU(2) Lie algebras that are exchanged by
hermitian conjugation. As we Just discussed. a representation of the SU(2)
Lie algebra is specified by an integer or half integer: we therefore conclude
that a representation of the Lie algebra of the Lorenty, group in four space-
time dimensions is specified by two integers or half-integers n and n'.

We will label these representations as (2n41, 2n'+1): the munber of com-
ponents of a representation is then (2n+1)(2n'+1). Different components
within a representation can also be labeled by their angular momentum rep-
resentations. To do this, we first note that. from egs. (33.16) and (33.17),
we have J; = N, + ] -",-4". Thus, deducing the allowed values of J given n and
n' becomes a standard problem in the addition of angular momenta. The
general result is that the allowed values of j are [n—n'|, [n—n’|+1,..., n+n’,
and each of these values appears exactly once,

The four simplest and most often encountered representations are (1,1).
(2,1). (1.2), and (2,2). These are given special names:

(1, 1) = scalar or singlet

(2,1) = left-handed spinor

(1,2) = right-handed spinor

(2,2) = vector. (33.21)
[t may seem a little surprising that (2,2) is to be identified as the vector
representation. To see that this must be the case, we first note that the
vector representation is irreducible: all the components of a four-vector mix
with each other under a general Lorentz transformat ion. Secondly, the vector
representation has four components. The only candidate irreducible repre-
sentations are (4, 1), (1,4). and (2.2). The first two of these contain angular
momenta j = :f only, whereas (2,2) contains J =0 and 1. This is just right
for a four-vector, whose time component is a scalar under spatial rotations.
and whose space components are a three-vector.

[n order to gain a better understanding of what it means for (2.2) to be
the vector representation, we must first investigate the spinor representations

(1,2) and (2, 1), which contain angular momenta j = 1 only.

Reference notes

An extended treatment of representations of the Lorentz group in four
dimensions can be found in Weinberg 1.

Problems

Express A% (1), St(x). and T'(x) in terms of B (1),

3
At Verify that eqs. (33.18)-(33.20) follow from eqs. (33.11)(33.13).
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