Holography, Gauge-gravity Connection and Black Hole Entropy

Parthasarathi Majumdar,

Saha Institute of Nuclear Physics, Kolkata

Theoretical Physics Department, TIFR, Mumbai; 18 May 2010
May 18, 2010

Black holes : Extreme gravitation at work \rightarrow what lies beyond the 'horizon' observationally unknown

Black holes : Extreme gravitation at work \rightarrow what lies beyond the 'horizon' observationally unknown

Inaccessibility \Rightarrow apprehensions \Rightarrow Turn to theory

Black holes : Extreme gravitation at work \rightarrow what lies beyond the 'horizon' observationally unknown

Inaccessibility \Rightarrow apprehensions \Rightarrow Turn to theory
Black Holes from Newton's law ? Dark stars mitchell 1774: Laplace 1789

Black holes : Extreme gravitation at work \rightarrow what lies beyond the 'horizon' observationally unknown

Inaccessibility \Rightarrow apprehensions \Rightarrow Turn to theory
Black Holes from Newton's law ? Dark stars Mitchell 1774; Laplace 1789

c is very high; but did Newton have reason to believe that nothing could travel faster than c ?

All velocities are relative : \Leftrightarrow Travel at c or even higher is not barred! Galilei 1600s

All velocities are relative : \Leftrightarrow Travel at c or even higher is not barred! Galilei 1600s

Galileian relativity : $c \rightarrow c \pm v \Rightarrow$ No dark stars!

SR gravitation ?

Ruled out by thought-experiments! ‘Happiest thought of my life Einstein 1908

REBKA-POUND-SNYDER EXPT

SR gravitation ?

Ruled out by thought-experiments! 'Happiest thought of my life Einstein 1908

Grav. frame \equiv accl frame \equiv freely falling frame

REBKA-POUND-SNYDER EXPT

SR gravitation ?

Ruled out by thought-experiments! 'Happiest thought of my life Einstein 1908

Grav. frame \equiv accl frame \equiv freely falling frame
\Rightarrow Generalization : PHYSICAL LAWS ARE THE SAME FOR ALL REFERENCE FRAMES \rightarrow Principle of Equivalence (PoE)

REBKA-POUND-SNYDER EXPT

SR gravitation ?

Ruled out by thought-experiments! 'Happiest thought of my life Einstein 1908

Grav. frame \equiv accl frame \equiv freely falling frame
\Rightarrow Generalization : PHYSICAL LAWS ARE THE SAME FOR ALL REFERENCE FRAMES \rightarrow Principle of Equivalence (PoE)

REBKA-POUND-SNYDER EXPT

SR gravitation ?

Ruled out by thought-experiments! 'Happiest thought of my life Einstein 1908

Grav. frame \equiv accl frame \equiv freely falling frame
\Rightarrow Generalization : PHYSICAL LAWS ARE THE SAME FOR ALL REFERENCE FRAMES \rightarrow Principle of Equivalence (PoE)

REBKA-POUND-SNYDER EXPT

$$
\omega_{D}=\omega_{S}\left(1+\frac{\Delta \phi_{S D}}{c^{2}}\right)
$$

$$
c(D)=c(S)\left(1+\frac{\Delta \phi_{S D}}{c^{2}}\right)
$$

$$
c(D)=c(S)\left(1+\frac{\Delta \phi S D}{c^{2}}\right)
$$

Spacetime is curved!

Toy example of curved space: geography globe

Toy example of curved space: geography globe

Non-Euclidean in the large, but locally Euclidean

Einstein's GR model of spacetime : Curved but locally Minkowskian \Rightarrow have local light cones

Einstein's GR model of spacetime : Curved but locally Minkowskian \Rightarrow have local light cones

Tilting of local light cones \rightarrow measure of local spacetime curvature

Einstein's GR model of spacetime : Curved but locally Minkowskian \Rightarrow have local light cones

Tilting of local light cones \rightarrow measure of local spacetime curvature GRAVITATIONAL FORCE replaced by CURVED SPACETIME GEOMETRY (Gauss, Riemann)

What causes spacetime to curve ?

What causes spacetime to curve ?

Einstein's equation

$$
\begin{aligned}
\mathcal{G}_{a b} & =8 \pi G T_{a b} \\
\text { sptm curvature } & =8 \pi G \text { energy }- \text { mom density }
\end{aligned}
$$

What causes spacetime to curve ?

Einstein's equation

$$
\begin{aligned}
\mathcal{G}_{a b} & =8 \pi G T_{a b} \\
\text { sptm curvature } & =8 \pi G \text { energy }- \text { mom density }
\end{aligned}
$$

- Energy-momentum density, not mass, generates curvature

What causes spacetime to curve ?

Einstein's equation

$$
\begin{aligned}
\mathcal{G}_{a b} & =8 \pi G T_{a b} \\
\text { sptm curvature } & =8 \pi G \text { energy }- \text { mom density }
\end{aligned}
$$

- Energy-momentum density, not mass, generates curvature
- Spacetime geometry is DYNAMICAL!
- Matter tells spacetime how to curve, spacetime tells matter how to move

What causes spacetime to curve ?

Einstein's equation

$$
\begin{aligned}
\mathcal{G}_{a b} & =8 \pi G T_{a b} \\
\text { sptm curvature } & =8 \pi G \text { energy }- \text { mom density }
\end{aligned}
$$

- Energy-momentum density, not mass, generates curvature
- Spacetime geometry is DYNAMICAL!
- Matter tells spacetime how to curve, spacetime tells matter how to move What evidence is there of a dynamical spacetime ?

What causes spacetime to curve ?

Einstein's equation

$$
\begin{aligned}
\mathcal{G}_{a b} & =8 \pi G T_{a b} \\
\text { sptm curvature } & =8 \pi G \text { energy }- \text { mom density }
\end{aligned}
$$

- Energy-momentum density, not mass, generates curvature
- Spacetime geometry is DYNAMICAL !
- Matter tells spacetime how to curve, spacetime tells matter how to move What evidence is there of a dynamical spacetime ?
- Expanding universe (Hubble)

What causes spacetime to curve ?

Einstein's equation

$$
\begin{aligned}
\mathcal{G}_{a b} & =8 \pi G T_{a b} \\
\text { sptm curvature } & =8 \pi G \text { energy }- \text { mom density }
\end{aligned}
$$

- Energy-momentum density, not mass, generates curvature
- Spacetime geometry is DYNAMICAL!
- Matter tells spacetime how to curve, spacetime tells matter how to move What evidence is there of a dynamical spacetime ?
- Expanding universe (Hubble)
- Gravitational waves (Hulse-Taylor pulsar)

What causes spacetime to curve ?

Einstein's equation

$$
\begin{aligned}
\mathcal{G}_{a b} & =8 \pi G T_{a b} \\
\text { sptm curvature } & =8 \pi G \text { energy }- \text { mom density }
\end{aligned}
$$

- Energy-momentum density, not mass, generates curvature
- Spacetime geometry is DYNAMICAL!
- Matter tells spacetime how to curve, spacetime tells matter how to move What evidence is there of a dynamical spacetime ?
- Expanding universe (Hubble)
- Gravitational waves (Hulse-Taylor pulsar)
- Black holes

Black hole spacetime Eddington-Finkelstein

Black hole spacetime : another view

SINGULARITY

Black holes ... are the most perfect macroscopic objects there are in the universe. The only elements in their construction are our notions of space and time ... and because they appear as ... family of exact solutions of Einstein's equation, they are the simplest objects as well. - Subramanian Chandrasekhar

Black holes ... are the most perfect macroscopic objects there are in the universe. The only elements in their construction are our notions of space and time ... and because they appear as ... family of exact solutions of Einstein's equation, they are the simplest objects as well. - Subramanian Chandrasekhar

Yet Black hole sptms have

Black holes ... are the most perfect macroscopic objects there are in the universe. The only elements in their construction are our notions of space and time ... and because they appear as ... family of exact solutions of Einstein's equation, they are the simplest objects as well. - Subramanian Chandrasekhar

Yet Black hole sptms have

- Singularities, where all known laws of physics break down

Black holes ... are the most perfect macroscopic objects there are in the universe. The only elements in their construction are our notions of space and time ... and because they appear as ... family of exact solutions of Einstein's equation, they are the simplest objects as well. - Subramanian Chandrasekhar

Yet Black hole sptms have

- Singularities, where all known laws of physics break down
- Event horizon : boundary of sptm accessible to asympt. obs.

Black holes ... are the most perfect macroscopic objects there are in the universe. The only elements in their construction are our notions of space and time ... and because they appear as ... family of exact solutions of Einstein's equation, they are the simplest objects as well. - Subramanian Chandrasekhar

Yet Black hole sptms have

- Singularities, where all known laws of physics break down
- Event horizon : boundary of sptm accessible to asympt. obs.

[^0]Black holes ... are the most perfect macroscopic objects there are in the universe. The only elements in their construction are our notions of space and time ... and because they appear as ... family of exact solutions of Einstein's equation, they are the simplest objects as well. - Subramanian Chandrasekhar

Yet Black hole sptms have

- Singularities, where all known laws of physics break down
- Event horizon : boundary of sptm accessible to asympt. obs.

Laws of bh mech Bardeen, Carter, Hawking 1972

$$
\begin{aligned}
\delta \mathcal{A}_{\text {hor }} & \geq 0 \\
\kappa_{\text {hor }} & =\text { const } \\
\delta M & =\kappa_{\text {hor }} \delta \mathcal{A}_{\text {hor }}+\cdots
\end{aligned}
$$

Gen. Sec. Law of thermo. Bekenstein, 1973: $\delta\left(S_{\text {out }}+S_{b h}\right) \geq 0$.

Gen. Sec. Law of thermo. Bekenstein, 1973: $\delta\left(S_{o u t}+S_{b h}\right) \geq 0$.

$$
S_{b h}=\frac{\mathcal{A}_{h o r}}{4 l_{P}^{2}}\left(k_{B}=1\right)
$$

Gen. Sec. Law of thermo. Bekenstein, 1973: $\delta\left(S_{o u t}+S_{b h}\right) \geq 0$.

$$
S_{b h}=\frac{\mathcal{A}_{h o r}}{4 l_{P}^{2}}\left(k_{B}=1\right)
$$

$l_{P} \equiv\left(G \hbar / c^{3}\right)^{1 / 2} \sim 10^{-33} c m \rightarrow$ quantum gravity

Gen. Sec. Law of thermo. Bekenstein, 1973: $\delta\left(S_{o u t}+S_{b h}\right) \geq 0$.

$$
S_{b h}=\frac{\mathcal{A}_{h o r}}{4 l_{P}^{2}}\left(k_{B}=1\right)
$$

$l_{P} \equiv\left(G \hbar / c^{3}\right)^{1 / 2} \sim 10^{-33} \mathrm{~cm} \rightarrow$ quantum gravity
Need to go beyond classical GR - compulsion, not aesthetics

Gen. Sec. Law of thermo. Bekenstein, 1973: $\delta\left(S_{o u t}+S_{b h}\right) \geq 0$.

$$
S_{b h}=\frac{\mathcal{A}_{h o r}}{4 l_{P}^{2}}\left(k_{B}=1\right)
$$

$l_{P} \equiv\left(G \hbar / c^{3}\right)^{1 / 2} \sim 10^{-33} c m \rightarrow$ quantum gravity

Need to go beyond classical GR - compulsion, not aesthetics

Physics at $10^{-33} \mathrm{~cm}$ determines entropy of bh of size $10^{11} \mathrm{~cm}$ - Extreme Macro QM!

Gen. Sec. Law of thermo. Bekenstein, 1973: $\delta\left(S_{o u t}+S_{b h}\right) \geq 0$.

$$
S_{b h}=\frac{\mathcal{A}_{h o r}}{4 l_{P}^{2}}\left(k_{B}=1\right)
$$

$l_{P} \equiv\left(G \hbar / c^{3}\right)^{1 / 2} \sim 10^{-33} \mathrm{~cm} \rightarrow$ quantum gravity

Need to go beyond classical GR - compulsion, not aesthetics

Physics at $10^{-33} \mathrm{~cm}$ determines entropy of bh of size $10^{11} \mathrm{~cm}$ - Extreme Macro QM!

Two issues to be addressed:

Gen. Sec. Law of thermo. Bekenstein, 1973: $\delta\left(S_{o u t}+S_{b h}\right) \geq 0$.

$$
S_{b h}=\frac{\mathcal{A}_{h o r}}{4 l_{P}^{2}}\left(k_{B}=1\right)
$$

$l_{P} \equiv\left(G \hbar / c^{3}\right)^{1 / 2} \sim 10^{-33} \mathrm{~cm} \rightarrow$ quantum gravity

Need to go beyond classical GR - compulsion, not aesthetics

Physics at $10^{-33} \mathrm{~cm}$ determines entropy of bh of size $10^{11} \mathrm{~cm}$ - Extreme Macro QM!

Two issues to be addressed:

- How is it that $S_{b h}=S_{b h}\left(\mathcal{A}_{h o r}\right)$ while $S_{\text {thermo }}=S_{\text {thermo }}(v o l)$?

Gen. Sec. Law of thermo. Bekenstein, 1973: $\delta\left(S_{o u t}+S_{b h}\right) \geq 0$.

$$
S_{b h}=\frac{\mathcal{A}_{h o r}}{4 l_{P}^{2}}\left(k_{B}=1\right)
$$

$l_{P} \equiv\left(G \hbar / c^{3}\right)^{1 / 2} \sim 10^{-33} c m \rightarrow$ quantum gravity
Need to go beyond classical GR - compulsion, not aesthetics
Physics at $10^{-33} \mathrm{~cm}$ determines entropy of bh of size $10^{11} \mathrm{~cm}$ - Extreme Macro QM!

Two issues to be addressed:

- How is it that $S_{b h}=S_{b h}\left(\mathcal{A}_{h o r}\right)$ while $S_{\text {thermo }}=S_{\text {thermo }}(v o l)$?
- What degrees of freedom contribute to $S_{b h}$?

Vac EM in Minkowski sptm: $\nabla \cdot \vec{E}=0$ everywhere in $V \Rightarrow Q(V)=0$

Vac EM in Minkowski sptm: $\nabla \cdot \vec{E}=0$ everywhere in $V \Rightarrow Q(V)=0$
Can define total charge globally

Vac EM in Minkowski sptm: $\nabla \cdot \vec{E}=0$ everywhere in $V \Rightarrow Q(V)=0$
Can define total charge globally

$$
Q_{t o t} \equiv \int_{S_{\infty}} \vec{E} \cdot \hat{n} d^{2} a
$$

\rightarrow holographic

Vac EM in Minkowski sptm: $\nabla \cdot \vec{E}=0$ everywhere in $V \Rightarrow Q(V)=0$
Can define total charge globally

$$
Q_{t o t} \equiv \int_{S_{\infty}} \vec{E} \cdot \hat{n} d^{2} a
$$

\rightarrow holographic
But, $\mathcal{H}_{v}=(1 / 8 \pi)\left(\vec{E}^{2}+\vec{B}^{2}\right) \rightarrow$ photons
Vac GR : no $\mathcal{T}^{a b}$ s.t. $\nabla_{a} \mathcal{T}^{a b}=0$ in bulk

Vac EM in Minkowski sptm: $\nabla \cdot \vec{E}=0$ everywhere in $V \Rightarrow Q(V)=0$
Can define total charge globally

$$
Q_{t o t} \equiv \int_{S_{\infty}} \vec{E} \cdot \hat{n} d^{2} a
$$

\rightarrow holographic
But, $\mathcal{H}_{v}=(1 / 8 \pi)\left(\vec{E}^{2}+\vec{B}^{2}\right) \rightarrow$ photons
Vac GR : no $\mathcal{T}^{a b}$ s.t. $\nabla_{a} \mathcal{T}^{a b}=0$ in bulk

$$
\begin{aligned}
H_{v} & =\int_{\mathcal{S}}[N \mathcal{H}+\mathbf{N} \cdot \mathbf{P}] \\
& \approx 0 \text { when } \mathcal{H} \approx 0, \mathbf{P} \approx 0
\end{aligned}
$$

Vac EM in Minkowski sptm: $\nabla \cdot \vec{E}=0$ everywhere in $V \Rightarrow Q(V)=0$
Can define total charge globally

$$
Q_{t o t} \equiv \int_{S_{\infty}} \vec{E} \cdot \hat{n} d^{2} a
$$

\rightarrow holographic
But, $\mathcal{H}_{v}=(1 / 8 \pi)\left(\vec{E}^{2}+\vec{B}^{2}\right) \rightarrow$ photons
Vac GR : no $\mathcal{T}^{a b}$ s.t. $\nabla_{a} \mathcal{T}^{a b}=0$ in bulk

$$
\begin{aligned}
H_{v} & =\int_{\mathcal{S}}[N \mathcal{H}+\mathbf{N} \cdot \mathbf{P}] \\
& \approx 0 \text { when } \mathcal{H} \approx 0, \mathbf{P} \approx 0
\end{aligned}
$$

\Rightarrow no analogue of $\mathrm{E}^{2}+\mathrm{B}^{2}$ in vac GR! Excitations 'polymeric'

Grav energy globally defined

Grav energy globally defined

$$
H_{\text {Komar }}=\frac{1}{8 \pi} \int_{\mathcal{S}_{\infty}} d^{2} \sigma^{a b} \nabla_{a} K_{b}
$$

Grav energy globally defined

$$
H_{K o m a r}=\frac{1}{8 \pi} \int_{\mathcal{S}_{\infty}} d^{2} \sigma^{a b} \nabla_{a} K_{b}
$$

Holography: 3 dim bulk info encoded on 2 dim bdy

Grav energy globally defined

$$
H_{\text {Komar }}=\frac{1}{8 \pi} \int_{\mathcal{S}_{\infty}} d^{2} \sigma^{a b} \nabla_{a} K_{b}
$$

Holography: 3 dim bulk info encoded on 2 dim bdy

Gravitons ?

Grav energy globally defined

$$
H_{\text {Komar }}=\frac{1}{8 \pi} \int_{\mathcal{S}_{\infty}} d^{2} \sigma^{a b} \nabla_{a} K_{b}
$$

Holography: 3 dim bulk info encoded on 2 dim bdy

Gravitons ?

Weak field approx $g_{a b}=\underbrace{\bar{g}_{a b}}_{b k g d}+\underbrace{h_{a b}}_{\text {graviton }}$

Grav energy globally defined

$$
H_{\text {Komar }}=\frac{1}{8 \pi} \int_{\mathcal{S}_{\infty}} d^{2} \sigma^{a b} \nabla_{a} K_{b}
$$

Holography: 3 dim bulk info encoded on 2 dim bdy

Gravitons ?

Weak field approx $g_{a b}=\underbrace{\bar{g}_{a b}}_{\text {bkgd }}+\underbrace{h_{a b}}_{\text {graviton }}$

$$
\mathcal{H}_{v}=(1 / 8 \pi)\left[\left({ }^{3} h\right)^{2}+\left({ }^{3} \pi\right)^{2}\right]
$$

Grav energy globally defined

$$
H_{K o m a r}=\frac{1}{8 \pi} \int_{\mathcal{S}_{\infty}} d^{2} \sigma^{a b} \nabla_{a} K_{b}
$$

Holography: $\mathbf{3}$ dim bulk info encoded on 2 dim bdy

Gravitons ?

Weak field approx $g_{a b}=\underbrace{\bar{g}_{a b}}_{\text {bkgd }}+\underbrace{h_{a b}}_{\text {graviton }}$

$$
\mathcal{H}_{v}=(1 / 8 \pi)\left[\left({ }^{3} h\right)^{2}+\left({ }^{3} \pi\right)^{2}\right]
$$

As $|h| \nearrow$, bkreactn \nearrow, approx. invalid

In any quantum GR theory

In any quantum GR theory

$$
\hat{H}=\underbrace{\hat{H}_{v}}_{b l k}+\underbrace{\hat{H}_{b}}_{b d y}
$$

In any quantum GR theory

$$
\begin{gathered}
\hat{H}=\underbrace{\hat{H}_{v}}_{b l k}+\underbrace{\hat{H}_{b}}_{b d y} \\
|\Psi\rangle=\sum_{v, b} c_{v b} \underbrace{\left|\psi_{v}\right\rangle}_{b l k} \underbrace{\left|\chi_{b}\right\rangle}_{b d y} \in \mathcal{H}_{v} \otimes \mathcal{H}_{b}
\end{gathered}
$$

Hamiltonian constraint (bulk)

$$
\hat{H}_{v}\left|\psi_{v}\right\rangle=0
$$

In any quantum GR theory

$$
\begin{gathered}
\hat{H}=\underbrace{\hat{H}_{v}}_{b l k}+\underbrace{\hat{H}_{b}}_{b d y} \\
|\Psi\rangle=\sum_{v, b} c_{v b} \underbrace{\left|\psi_{v}\right\rangle}_{b l k} \underbrace{\left|\chi_{b}\right\rangle}_{b d y} \in \mathcal{H}_{v} \otimes \mathcal{H}_{b}
\end{gathered}
$$

Hamiltonian constraint (bulk)

$$
\begin{gathered}
\hat{H}_{v}\left|\psi_{v}\right\rangle=0 \\
Z=\operatorname{Tr}_{v} \operatorname{Tr}_{b} \exp -\beta\left[\hat{H}_{v}+\hat{H}_{b}\right] \\
=\operatorname{Tr}_{b} \exp -\beta \hat{H}_{b} \equiv Z_{b}
\end{gathered}
$$

Bulk states decouple! Boundary states determine bh thermodynamics completely \rightarrow holography ! (PM 2001, 2007)

Bulk states decouple! Boundary states determine bh thermodynamics

 completely \rightarrow holography ! (PM 2001, 2007)Different from strong holography (t Hoort 1992; Susskind 1993; Bousso 2002)

Bulk states decouple! Boundary states determine bh thermodynamics

 completely \rightarrow holography ! (PM 2001, 2007)Different from strong holography (t Hooft 1992; Susskind 1993; Bousso 2002)
Holographic Hypothesis (HH)

Bulk states decouple! Boundary states determine bh thermodynamics

 completely \rightarrow holography ! (PM 2001, 2007)Different from strong holography (t Hooft 1992; Susskind 1993: Bousso 2002)

Holographic Hypothesis (HH)

... Given any closed surface, we can represent all that happens (gravitationally) inside it by degrees of freedom on this surface itself. This ... suggests that quantum gravity should be described by a topological quantum field theory in which all (gravitational) degrees of freedom are projected onto the boundary.

Bulk states decouple! Boundary states determine bh thermodynamics

 completely \rightarrow holography ! (PM 2001, 2007)Different from strong holography (t Hooft 1992; Susskind 1993: Bousso 2002)

Holographic Hypothesis (HH)

... Given any closed surface, we can represent all that happens (gravitationally) inside it by degrees of freedom on this surface itself. This ... suggests that quantum gravity should be described by a topological quantum field theory in which all (gravitational) degrees of freedom are projected onto the boundary.

What sort of boundary ? Not asymptotic bdy; not inner bdy of accessible $\mathrm{sptm} \rightarrow$ EH (teleological, stationary, ...)

Bulk states decouple! Boundary states determine bh thermodynamics

 completely \rightarrow holography ! (PM 2001, 2007)Different from strong holography (t Hooft 1992; Susskind 1993: Bousso 2002)

Holographic Hypothesis (HH)

... Given any closed surface, we can represent all that happens (gravitationally) inside it by degrees of freedom on this surface itself. This ... suggests that quantum gravity should be described by a topological quantum field theory in which all (gravitational) degrees of freedom are projected onto the boundary.

What sort of boundary ? Not asymptotic bdy; not inner bdy of accessible $\mathrm{sptm} \rightarrow$ EH (teleological, stationary, ...)

Work with Isolated Horizons (IH) as local, non-stationary generalization of EHs (Ashtekar et. al. 1997-2001)

- Nonstationary
- Nonstationary
- Null (lightlike) inner boundary of sptm with topol $R \otimes S^{2}$
- Nonstationary
- Null (lightlike) inner boundary of sptm with topol $R \otimes S^{2}$
- $\mathcal{A}\left(S^{2}\right)=$ const \rightarrow isolation
- Nonstationary
- Null (lightlike) inner boundary of sptm with topol $R \otimes S^{2}$
- $\mathcal{A}\left(S^{2}\right)=$ const \rightarrow isolation
- Zeroth law of IHM surface grav $\kappa_{I H}=$ const
- Nonstationary
- Null (lightlike) inner boundary of sptm with topol $R \otimes S^{2}$
- $\mathcal{A}\left(S^{2}\right)=$ const \rightarrow isolation
- Zeroth law of $I H M$ surface grav $\kappa_{I H}=$ const
- $M_{I H} \equiv M_{A D M}-\mathcal{E}_{r a d}^{\infty}$ s.t. $\delta M_{I H}=\kappa_{l} \delta A_{h o r}+\ldots$ (Ist law of IHM)
- Nonstationary
- Null (lightlike) inner boundary of sptm with topol $R \otimes S^{2}$
- $\mathcal{A}\left(S^{2}\right)=$ const \rightarrow isolation
- Zeroth law of IHM surface grav $\kappa_{I H}=$ const
- $M_{I H} \equiv M_{A D M}-\mathcal{E}_{r a d}^{\infty}$ s.t. $\delta M_{I H}=\kappa_{l} \delta A_{h o r}+\ldots$ (Ist law of IHM)
- IH microcanonical ensemble with fixed $\mathcal{A}_{h o r}$
- Nonstationary
- Null (lightlike) inner boundary of sptm with topol $R \otimes S^{2}$
- $\mathcal{A}\left(S^{2}\right)=$ const \rightarrow isolation
- Zeroth law of IHM surface grav $\kappa_{I H}=$ const
- $M_{I H} \equiv M_{A D M}-\mathcal{E}_{r a d}^{\infty}$ s.t. $\delta M_{I H}=\kappa_{l} \delta A_{h o r}+\ldots$ (Ist law of IHM)
- IH microcanonical ensemble with fixed $\mathcal{A}_{h o r}$
- Hawking radiation requires IH \rightarrow Dynamical Hor

Black hole radiance

Canonical Ensemble of IHs in rad bath : compute $Z_{b} \rightarrow S_{\text {can }}$

Canonical Ensemble of IHs in rad bath : compute $Z_{b} \rightarrow S_{\text {can }}$

- Assume equil. IH with fixed $\mathcal{A}_{I H}$ and $M_{I H}=M\left(\mathcal{A}_{I H}\right)$.

Canonical Ensemble of IHs in rad bath : compute $Z_{b} \rightarrow S_{\text {can }}$

- Assume equil. IH with fixed $\mathcal{A}_{I H}$ and $M_{I H}=M\left(\mathcal{A}_{I H}\right)$.
- Keep Gaussian fluct. (Das, Bhaduri, PM 2001; Chaterijee, PM 2003)

Canonical Ensemble of IHs in rad bath : compute $Z_{b} \rightarrow S_{c a n}$

- Assume equil. IH with fixed $\mathcal{A}_{I H}$ and $M_{I H}=M\left(\mathcal{A}_{I H}\right)$.
- Keep Gaussian fluct. (Das, Bhaduri, PM 2001; Chaterice, PM 2003)
- $\mathcal{A}_{n} \sim n l_{P}^{2}, n \gg 1$ (justify later)

Canonical Ensemble of IHs in rad bath : compute $Z_{b} \rightarrow S_{\text {can }}$

- Assume equil. IH with fixed $\mathcal{A}_{I H}$ and $M_{I H}=M\left(\mathcal{A}_{I H}\right)$.
- Keep Gaussian fluct. (Das, Bhaduri, PM 2001; Chatereriee, PM 2003)
- $\mathcal{A}_{n} \sim n l_{P}^{2}, n \gg 1$ (justify later)

$$
S_{\text {can }}\left(\mathcal{A}_{I H}\right)=S_{I H}\left(\mathcal{A}_{I H}\right)+\underbrace{\frac{1}{2} \log \Delta\left(\mathcal{A}_{I H}\right)}_{\text {th fluc corr }}
$$

Canonical Ensemble of IHs in rad bath : compute $Z_{b} \rightarrow S_{\text {can }}$

- Assume equil. IH with fixed $\mathcal{A}_{I H}$ and $M_{I H}=M\left(\mathcal{A}_{I H}\right)$.
- Keep Gaussian fluct. (Das, Bhaduri, PM 2001; Chatereriee, PM 2003)
- $\mathcal{A}_{n} \sim n l_{P}^{2}, n \gg 1$ (justify later)

$$
S_{\text {can }}\left(\mathcal{A}_{I H}\right)=S_{I H}\left(\mathcal{A}_{I H}\right)+\underbrace{\frac{1}{2} \log \Delta\left(\mathcal{A}_{I H}\right)}_{\text {th fluc corr }}
$$

Two issues arise :

Canonical Ensemble of IHs in rad bath : compute $Z_{b} \rightarrow S_{\text {can }}$

- Assume equil. IH with fixed $\mathcal{A}_{I H}$ and $M_{I H}=M\left(\mathcal{A}_{I H}\right)$.
- Keep Gaussian fluct. (Das, Bhaduri, PM 2001; Chaterejice, PM 2003)
- $\mathcal{A}_{n} \sim n l_{P}^{2}, n \gg 1$ (justify later)

$$
S_{\text {can }}\left(\mathcal{A}_{I H}\right)=S_{I H}\left(\mathcal{A}_{I H}\right)+\underbrace{\frac{1}{2} \log \Delta\left(\mathcal{A}_{I H}\right)}_{\text {th fluc corr }}
$$

Two issues arise :

- Expect $S_{c a n}+$ ve real $\Rightarrow C>0$ (th stab). How/when violated (e.g. Schwarzschild)?

Canonical Ensemble of IHs in rad bath : compute $Z_{b} \rightarrow S_{\text {can }}$

- Assume equil. IH with fixed $\mathcal{A}_{I H}$ and $M_{I H}=M\left(\mathcal{A}_{I H}\right)$.
- Keep Gaussian fluct. (Das, Bhaduri, PM 2001; Chaterejec, PM 2003)
- $\mathcal{A}_{n} \sim n l_{P}^{2}, n \gg 1$ (justify later)

$$
S_{\text {can }}\left(\mathcal{A}_{I H}\right)=S_{I H}\left(\mathcal{A}_{I H}\right)+\underbrace{\frac{1}{2} \log \Delta\left(\mathcal{A}_{I H}\right)}_{\text {th fluc corr }}
$$

Two issues arise :

- Expect $S_{c a n}+$ ve real $\Rightarrow C>0$ (th stab). How/when violated (e.g. Schwarzschild)?
- How to compute $S_{I H}$?

Canonical Ensemble of IHs in rad bath : compute $Z_{b} \rightarrow S_{\text {can }}$

- Assume equil. IH with fixed $\mathcal{A}_{I H}$ and $M_{I H}=M\left(\mathcal{A}_{I H}\right)$.
- Keep Gaussian fluct. (Das, Bhaduri, PM 2001; Chaterejec, PM 2003)
- $\mathcal{A}_{n} \sim n l_{P}^{2}, n \gg 1$ (justify later)

$$
S_{\text {can }}\left(\mathcal{A}_{I H}\right)=S_{I H}\left(\mathcal{A}_{I H}\right)+\underbrace{\frac{1}{2} \log \Delta\left(\mathcal{A}_{I H}\right)}_{\text {th fluc corr }}
$$

Two issues arise :

- Expect $S_{c a n}+$ ve real $\Rightarrow C>0$ (th stab). How/when violated (e.g. Schwarzschild)?
- How to compute $S_{I H}$? Need microscopic QG theory of IH

Condition for thermal stability (Chaterice, PM 2005; PM 2007)

Condition for thermal stability (Chaterije, PM 2005; PM 2007)

$$
\Delta>0 \Rightarrow \frac{M_{I H}}{M_{P}}>\frac{S_{I H}}{k_{B}}
$$

Condition for thermal stability (Chaterejec, PM 2005; PM 2007)

$$
\Delta>0 \Rightarrow \frac{M_{I H}}{M_{P}}>\frac{S_{I H}}{k_{B}}
$$

Necessary and Sufficient cond. for $S_{c a n}>0$ and $C>0$

Condition for thermal stability (Chateriec, PM 2005; PM 2007)

$$
\Delta>0 \Rightarrow \frac{M_{I H}}{M_{P}}>\frac{S_{I H}}{k_{B}}
$$

Necessary and Sufficient cond. for $S_{c a n}>0$ and $C>0$
Saturation $\Rightarrow C \nearrow \infty!\rightarrow$ 'First Order Phase Transition' between stable and unstable phases

Condition for thermal stability (Chaterije, PM 2005; PM 2007)

$$
\Delta>0 \Rightarrow \frac{M_{I H}}{M_{P}}>\frac{S_{I H}}{k_{B}}
$$

Necessary and Sufficient cond. for $S_{c a n}>0$ and $C>0$
Saturation $\Rightarrow C \nearrow \infty!\rightarrow$ 'First Order Phase Transition' between stable and unstable phases

Similar to Hawking-Page transition for AdS-Schw but no classical metrics used anywhere here

Condition for thermal stability (Chaterije, PM 2005; PM 2007)

$$
\Delta>0 \Rightarrow \frac{M_{I H}}{M_{P}}>\frac{S_{I H}}{k_{B}}
$$

Necessary and Sufficient cond. for $S_{c a n}>0$ and $C>0$
Saturation $\Rightarrow C \nearrow \infty!\rightarrow$ 'First Order Phase Transition' between stable and unstable phases
Similar to Hawking-Page transition for AdS-Schw but no classical metrics used anywhere here

Generalizable to more general black holes with charge and angular momentum, within Grand canonical ensemble Chatterije, PM 2005; PM in prog

Bulk dof $g_{a b} \rightarrow e_{a}^{I} \rightarrow \omega_{a}^{I J} \rightarrow S L(2, C)$ gauge potential \rightarrow Self-dual connection formulation Sen 1982, Ashtekar 1985

Bulk dof $g_{a b} \rightarrow e_{a}^{I} \rightarrow \omega_{a}^{I J} \rightarrow S L(2, C)$ gauge potential \rightarrow Self-dual connection formulation Sen 1982, Ashtckar 1985

IH null bdy $\Rightarrow{ }^{3} g_{a b} d x^{a} d x^{b}=0={ }^{3} g$

Bulk dof $g_{a b} \rightarrow e_{a}^{I} \rightarrow \omega_{a}^{I J} \rightarrow S L(2, C)$ gauge potential \rightarrow Self-dual connection formulation Sen 1982, Asineker 1985

IH null bdy $\Rightarrow{ }^{3} g_{a b} d x^{a} d x^{b}=0={ }^{3} g$ 3 dim gravity : $\mathcal{S}_{I H}=\int_{I H}{\sqrt{-{ }^{-} g}{ }^{3} R \text { impossible! }}^{\prime}$

Bulk dof $g_{a b} \rightarrow e_{a}^{I} \rightarrow \omega_{a}^{I J} \rightarrow S L(2, C)$ gauge potential \rightarrow Self-dual connection formulation Sen 1982, Ashtekar 1985

IH null bdy $\Rightarrow{ }^{3} g_{a b} d x^{a} d x^{b}=0={ }^{3} g$
3 dim gravity : $\mathcal{S}_{I H}=\int_{I H}{\sqrt{-{ }^{3} g}{ }^{3} R \text { impossible! }}^{\prime}$
On IH $\omega(b u l k) \rightarrow \mathbf{A}(I H) \rightarrow S L(2, C)$ gauge pot of TGT

Bulk dof $g_{a b} \rightarrow e_{a}^{I} \rightarrow \omega_{a}^{I J} \rightarrow S L(2, C)$ gauge potential \rightarrow Self-dual connection formulation Sen 1982, Ashtekar 1985

IH null bdy $\Rightarrow{ }^{3} g_{a b} d x^{a} d x^{b}=0={ }^{3} g$
3 dim gravity : $\mathcal{S}_{I H}=\int_{I H}{\sqrt{-{ }^{-} g}{ }^{3} R \text { impossible! }}^{\prime}$
On IH $\omega(b u l k) \rightarrow \mathbf{A}(I H) \rightarrow S L(2, C)$ gauge pot of TGT

$$
\begin{aligned}
\mathcal{S}_{I H}[\mathbf{A}] & =\operatorname{tr} \int_{I H} \epsilon^{a b c}\left[\left(\frac{k}{2 \pi}\right)\left(\mathbf{A}_{a} \partial_{b} \mathbf{A}_{c}+\mathbf{A}_{a} \mathbf{A}_{b} \mathbf{A}_{c}\right)+\mathbf{A}_{a} \boldsymbol{\Sigma}_{b c}\right] \\
& \equiv \mathcal{S}_{C S+\text { sources }}
\end{aligned}
$$

Bulk dof $g_{a b} \rightarrow e_{a}^{I} \rightarrow \omega_{a}^{I J} \rightarrow S L(2, C)$ gauge potential \rightarrow Self-dual connection formulation Sen 1982, Ashtekar 1985

IH null bdy $\Rightarrow{ }^{3} g_{a b} d x^{a} d x^{b}=0={ }^{3} g$
3 dim gravity : $\mathcal{S}_{I H}=\int_{I H}{\sqrt{-{ }^{-} g}{ }^{3} R \text { impossible! }}^{\prime}$
On IH $\omega($ bulk $) \rightarrow \mathbf{A}(I H) \rightarrow S L(2, C)$ gauge pot of TGT

$$
\begin{aligned}
\mathcal{S}_{I H}[\mathbf{A}] & =\operatorname{tr} \int_{I H} \epsilon^{a b c}\left[\left(\frac{k}{2 \pi}\right)\left(\mathbf{A}_{a} \partial_{b} \mathbf{A}_{c}+\mathbf{A}_{a} \mathbf{A}_{b} \mathbf{A}_{c}\right)+\mathbf{A}_{a} \boldsymbol{\Sigma}_{b c}\right] \\
& \equiv \mathcal{S}_{C S+\text { sources }}
\end{aligned}
$$

$\mathcal{S}_{G R}+\mathcal{S}_{I H} \rightarrow$ variational principle OK , provided $k \equiv\left(\mathcal{A}_{I H} / 4 \pi l_{P}^{2}\right)_{\text {nearest int }} \gg 1$

Bulk dof $g_{a b} \rightarrow e_{a}^{I} \rightarrow \omega_{a}^{I J} \rightarrow S L(2, C)$ gauge potential \rightarrow Self-dual connection formulation Sen 1982, Ashtekar 1985

IH null bdy $\Rightarrow{ }^{3} g_{a b} d x^{a} d x^{b}=0={ }^{3} g$
3 dim gravity : $\mathcal{S}_{I H}=\int_{I H}{\sqrt{-{ }^{-} g}{ }^{3} R \text { impossible! }}^{\prime}$
On IH $\omega($ bulk $) \rightarrow \mathbf{A}(I H) \rightarrow S L(2, C)$ gauge pot of TGT

$$
\begin{aligned}
\mathcal{S}_{I H}[\mathbf{A}] & =\operatorname{tr} \int_{I H} \epsilon^{a b c}\left[\left(\frac{k}{2 \pi}\right)\left(\mathbf{A}_{a} \partial_{b} \mathbf{A}_{c}+\mathbf{A}_{a} \mathbf{A}_{b} \mathbf{A}_{c}\right)+\mathbf{A}_{a} \boldsymbol{\Sigma}_{b c}\right] \\
& \equiv \mathcal{S}_{C S+\text { sources }}
\end{aligned}
$$

$\mathcal{S}_{G R}+\mathcal{S}_{I H} \rightarrow$ variational principle OK , provided $k \equiv\left(\mathcal{A}_{I H} / 4 \pi l_{P}^{2}\right)_{\text {nearest int }} \gg 1$
Quantize CS + sources $\rightarrow S_{I H} \equiv \log \operatorname{dim} \mathcal{H}_{C S+\text { sources }}$

Loop Quantum Gravity/Canonical QGR (bkgd-indep, nonpert)

Loop Quantum Gravity/Canonical QGR (bkgd-indep, nonpert)

$S L(2, C)$ inv self-dual gravity \rightarrow complex config. space \rightarrow gauge fix to Barbero-Immirzi $S U(2)$ inv formlation

Loop Quantum Gravity/Canonical QGR (bkgd-indep, nonpert)

$S L(2, C)$ inv self-dual gravity \rightarrow complex config. space \rightarrow gauge fix to Barbero-Immirzi $S U(2)$ inv formlation

Global canonical variables Fluxes $E_{f, S} \equiv \int_{S} d \sigma^{i} f_{a} E_{i}^{a}$

Loop Quantum Gravity/Canonical QGR (bkgd-indep, nonpert)

$S L(2, C)$ inv self-dual gravity \rightarrow complex config. space \rightarrow gauge fix to Barbero-Immirzi $S U(2)$ inv formlation
Global canonical variables Fluxes $E_{f, S} \equiv \int_{S} d \sigma^{i} f_{a} E_{i}^{a}$
For \mathcal{A}, E canonical quantization \Rightarrow

$$
\left[\hat{\mathcal{A}}_{I}^{a}, \hat{E}_{b, J}\right]=i \delta_{b}^{a} \eta_{I J} \delta^{(3)}(\ldots)
$$

Loop Quantum Gravity/Canonical QGR (bkgd-indep, nonpert)

$S L(2, C)$ inv self-dual gravity \rightarrow complex config. space \rightarrow gauge fix to Barbero-Immirzi $S U(2)$ inv formlation
Global canonical variables Fluxes $E_{f, S} \equiv \int_{S} d \sigma^{i} f_{a} E_{i}^{a}$
For \mathcal{A}, E canonical quantization \Rightarrow

$$
\left[\hat{\mathcal{A}}_{I}^{a}, \hat{E}_{b, J}\right]=i \delta_{b}^{a} \eta_{I J} \delta^{(3)}(\ldots)
$$

LQG : promote these to operators $\hat{h}_{l}(\hat{\mathcal{A}}), \hat{E}_{f, S}$

Loop Quantum Gravity/Canonical QGR (bkgd-indep, nonpert)

$S L(2, C)$ inv self-dual gravity \rightarrow complex config. space \rightarrow gauge fix to Barbero-Immirzi $S U(2)$ inv formlation
Global canonical variables Fluxes $E_{f, S} \equiv \int_{S} d \sigma^{i} f_{a} E_{i}^{a}$
For \mathcal{A}, E canonical quantization \Rightarrow

$$
\left[\hat{\mathcal{A}}_{I}^{a}, \hat{E}_{b, J}\right]=i \delta_{b}^{a} \eta_{I J} \delta^{(3)}(\ldots)
$$

LQG : promote these to operators $\hat{h}_{l}(\hat{\mathcal{A}}), \hat{E}_{f, S}$
Wave functionals in 'position' basis $\Psi=\Psi[\mathcal{A}]$ can be expressed as functions of holonomies $\psi\left(h_{l_{1}}, \ldots h_{l_{n}}, \ldots\right)$.

Loop Quantum Gravity/Canonical QGR (bkgd-indep, nonpert)

$S L(2, C)$ inv self-dual gravity \rightarrow complex config. space \rightarrow gauge fix to Barbero-Immirzi $S U(2)$ inv formlation

Global canonical variables Fluxes $E_{f, S} \equiv \int_{S} d \sigma^{i} f_{a} E_{i}^{a}$
For \mathcal{A}, E canonical quantization \Rightarrow

$$
\left[\hat{\mathcal{A}}_{I}^{a}, \hat{E}_{b, J}\right]=i \delta_{b}^{a} \eta_{I J} \delta^{(3)}(\ldots)
$$

LQG : promote these to operators $\hat{h}_{l}(\hat{\mathcal{A}}), \hat{E}_{f, S}$
Wave functionals in 'position' basis $\Psi=\Psi[\mathcal{A}]$ can be expressed as functions of holonomies $\psi\left(h_{l_{1}}, \ldots h_{l_{n}}, \ldots\right)$.
Holonomies completely specified by spin j_{l} associated with link l

Spin network : Quantum Space

Area operator (also volume, length) have bded, discrete spectrum

Area operator (also volume, length) have bded, discrete spectrum

$$
\hat{\mathcal{A}}_{S}=\sum_{I=1}^{N} \int_{S_{I}} \operatorname{det}^{1 / 2}\left[{ }^{2} g(\hat{E})\right]
$$

Area operator (also volume, length) have bded, discrete spectrum

$$
\begin{gathered}
\hat{\mathcal{A}}_{S} \equiv \sum_{I=1}^{N} \int_{S_{I}} \operatorname{det}^{1 / 2}[2 g(\hat{E})] \\
a\left(j_{1}, \ldots, j_{N}\right)=\frac{1}{4} \gamma l_{P}^{2} \sum_{p=1}^{N} \sqrt{j_{p}\left(j_{p}+1\right)} \\
\lim _{N \rightarrow \infty} a\left(j_{1}, \ldots j_{N}\right) \leq \mathcal{A}_{c l}+O\left(l_{P}^{2}\right)
\end{gathered}
$$

Area operator (also volume, length) have bded, discrete spectrum

$$
\begin{gathered}
\hat{\mathcal{A}}_{S} \equiv \sum_{I=1}^{N} \int_{S_{I}} \operatorname{det}^{1 / 2}[2 g(\hat{E})] \\
a\left(j_{1}, \ldots, j_{N}\right)=\frac{1}{4} \gamma l_{P}^{2} \sum_{p=1}^{N} \sqrt{j_{p}\left(j_{p}+1\right)} \\
\lim _{N \rightarrow \infty} a\left(j_{1}, \ldots j_{N}\right) \leq \mathcal{A}_{c l}+O\left(l_{P}^{2}\right)
\end{gathered}
$$

Equispaced $\forall j_{p}=1 / 2$
'Quantum' Isolated Horizon \rightarrow effective description (Ashekar, Baez, Corichi, Krasnov 1997)

Need to compute $S_{I H}=\log \operatorname{dim} \mathcal{H}_{C S+p t s o u r c e s\left(j_{1}, \ldots j_{n}\right)}$ for fixed $\mathcal{A}_{I H} \pm$ $O\left(l_{P}^{2}\right)$

Need to compute $S_{I H}=\log \operatorname{dim} \mathcal{H}_{C S+p t s o u r c e s\left(j_{1}, \ldots j_{n}\right)}$ for fixed $\mathcal{A}_{I H} \pm$ $O\left(l_{P}^{2}\right)$
Witten (1986) : $\operatorname{dim} \mathcal{H}_{C S}=\#$ conf blocks of $S U(2)_{k} W Z W\left(C F T_{2}\right)$ on punctured S^{2}

Need to compute $S_{I H}=\log \operatorname{dim} \mathcal{H}_{C S+p t s o u r c e s\left(j_{1}, \ldots j_{n}\right)}$ for fixed $\mathcal{A}_{I H} \pm$ $O\left(l_{P}^{2}\right)$
Witten (1986) : $\operatorname{dim} \mathcal{H}_{C S}=\#$ conf blocks of $S U(2)_{k} W Z W\left(C F T_{2}\right)$ on punctured S^{2}

4 dim gravity $\rightarrow 2$ dim CFT link

Need to compute $S_{I H}=\log \operatorname{dim} \mathcal{H}_{C S+p t s o u r c e s\left(j_{1}, \ldots j_{n}\right)}$ for fixed $\mathcal{A}_{I H} \pm$ $O\left(l_{P}^{2}\right)$
Witten (1986) : $\operatorname{dim} \mathcal{H}_{C S}=\#$ conf blocks of $S U(2)_{k} W Z W\left(C F T_{2}\right)$ on punctured S^{2}

4 dim gravity $\rightarrow 2$ dim CFT link
\Rightarrow (Kaul, PM 1998)

$$
\begin{aligned}
\operatorname{dim} \mathcal{H}_{C S+\left(j_{1}, \ldots, j_{n}\right)} & =\prod_{p=1}^{n} \sum_{m_{p}=-j_{p}}^{j_{p}}\left[\delta_{m_{1}+\cdots+m_{n}, 0}\right. \\
& -\frac{1}{2} \delta_{m_{1}+\cdots+m_{n},-1} \\
& \left.-\frac{1}{2} \delta_{m_{1}+\cdots+m_{n}, 1}\right]
\end{aligned}
$$

If $j_{p}=\frac{1}{2} \forall p=1, \ldots, n$

If $j_{p}=\frac{1}{2} \forall p=1, \ldots, n$

$$
\begin{aligned}
S_{m c}=S_{I H} & =\underbrace{\frac{A_{I H}}{4 l_{P}^{2}}}_{(\text {Ashtekar et. al. 1997) }} \\
& -\underbrace{\frac{3}{2} \log \left(\frac{A_{I H}}{4 l_{P}^{2}}\right)+\text { const. }+O\left(A_{I H}^{-1}\right)}_{\text {(Kaul,PM 2000) }}
\end{aligned}
$$

$$
\text { If } j_{p}=\frac{1}{2} \forall p=1, \ldots, n
$$

$$
\begin{aligned}
S_{m c}=S_{I H} & =\underbrace{\frac{A_{I H}}{4 l_{P}^{2}}}_{(\text {Ashtekar ct. al. 1997) }} \\
& -\underbrace{\frac{3}{2} \log \left(\frac{A_{I H}}{4 l_{P}^{2}}\right)+\text { const. }+O\left(A_{I H}^{-1}\right)}_{\text {(Kaul,PM 2000) }}
\end{aligned}
$$

Infinite series of corrections to semicl BHAL : characteristic signature of LQG

IT from BIT

Plaquettes have $A_{p l} \sim l_{P l}^{2}: A_{I b h} / A_{p l} \equiv N_{I b h} \gg 1$

Plaquettes have $A_{p l} \sim l_{P l}^{2}: A_{I b h} / A_{p l} \equiv N_{I b h} \gg 1$
Each Plaq has a binary BIT (e.g., spin $1 / 2$ state) \Rightarrow count total $\operatorname{dim}\{$ net spin $=0$ states $\} \equiv \mathcal{N}$

Plaquettes have $A_{p l} \sim l_{P l}^{2}: A_{I b h} / A_{p l} \equiv N_{I b h} \gg 1$
Each Plaq has a binary BIT (e.g., spin $1 / 2$ state) \Rightarrow count total $\operatorname{dim}\{$ net spin $=0$ states $\} \equiv \mathcal{N}$

$$
\mathcal{N}=\frac{N_{I b h}!}{\left(\left(N_{I b h} / 2\right)!\right)^{2}}-\frac{N_{I b h}!}{\left(N_{I b h} / 2+1\right)!\left(N_{I b h} / 2-1\right)!}
$$

Plaquettes have $A_{p l} \sim l_{P l}^{2}: A_{I b h} / A_{p l} \equiv N_{I b h} \gg 1$
Each Plaq has a binary BIT (e.g., spin $1 / 2$ state) \Rightarrow count total $\operatorname{dim}\{$ net spin $=0$ states $\} \equiv \mathcal{N}$

$$
\mathcal{N}=\frac{N_{I b h}!}{\left(\left(N_{I b h} / 2\right)!\right)^{2}}-\frac{N_{I b h}!}{\left(N_{I b h} / 2+1\right)!\left(N_{I b h} / 2-1\right)!}
$$

Use Stirling approximation for $N_{I b h} \gg 1$ and $S_{I b h} \equiv \log \mathcal{N}$ with units chosen such that $k_{B}=1$

Plaquettes have $A_{p l} \sim l_{P l}^{2}: A_{I b h} / A_{p l} \equiv N_{I b h} \gg 1$
Each Plaq has a binary BIT (e.g., spin $1 / 2$ state) \Rightarrow count total $\operatorname{dim}\{$ net spin $=0$ states $\} \equiv \mathcal{N}$

$$
\mathcal{N}=\frac{N_{I b h}!}{\left(\left(N_{I b h} / 2\right)!\right)^{2}}-\frac{N_{I b h}!}{\left(N_{I b h} / 2+1\right)!\left(N_{I b h} / 2-1\right)!}
$$

Use Stirling approximation for $N_{I b h} \gg 1$ and $S_{I b h} \equiv \log \mathcal{N}$ with units chosen such that $k_{B}=1$

For macroscopic isolated black holes ($N_{I b h} \gg 1$) Das, Kaul, PM 2001

Plaquettes have $A_{p l} \sim l_{P l}^{2}: A_{I b h} / A_{p l} \equiv N_{I b h} \gg 1$
Each Plaq has a binary BIT (e.g., spin $1 / 2$ state) \Rightarrow count total $\operatorname{dim}\{$ net spin $=0$ states $\} \equiv \mathcal{N}$

$$
\mathcal{N}=\frac{N_{I b h}!}{\left(\left(N_{I b h} / 2\right)!\right)^{2}}-\frac{N_{I b h}!}{\left(N_{I b h} / 2+1\right)!\left(N_{I b h} / 2-1\right)!}
$$

Use Stirling approximation for $N_{I b h} \gg 1$ and $S_{I b h} \equiv \log \mathcal{N}$ with units chosen such that $k_{B}=1$
For macroscopic isolated black holes ($N_{I b h} \gg 1$) Das, Kaul, PM 2001

$$
S_{I b h}=\frac{A_{I b h}}{4 l_{P}^{2}}-\underbrace{\frac{3}{2} \log \left(\frac{A_{I b h}}{4 l_{P}^{2}}\right)+\text { const. }+O\left(\frac{4 l_{P}^{2}}{A_{I b h}}\right)}_{\text {qu.sptm.corr. }}
$$

Summary

Summary

- Weaker version of holography derived from QGR, albeit heuristic

Summary

- Weaker version of holography derived from QGR, albeit heuristic
- Can bh entropy receives positive \log (area) corrections due to thermal fluct

Summary

- Weaker version of holography derived from QGR, albeit heuristic
- Can bh entropy receives positive \log (area) corrections due to thermal fluct
- Thermal stability: prelim non-semicl understanding why some black holes decay and others may not

Summary

- Weaker version of holography derived from QGR, albeit heuristic
- Can bh entropy receives positive \log (area) corrections due to thermal fluct
- Thermal stability: prelim non-semicl understanding why some black holes decay and others may not
- Microcan bh entropy understood for macro bhs; BH area law receives infinite series of finite corrections - signature of LQG

Summary

- Weaker version of holography derived from QGR, albeit heuristic
- Can bh entropy receives positive \log (area) corrections due to thermal fluct
- Thermal stability: prelim non-semicl understanding why some black holes decay and others may not
- Microcan bh entropy understood for macro bhs; BH area law receives infinite series of finite corrections - signature of LQG
- Bekenstein entropy bound tightened due to LQG corrections

Pending Issues

Pending Issues

- IH \rightarrow Dynamical Hor unclear: Hawking radiation?

Pending Issues

- IH \rightarrow Dynamical Hor unclear: Hawking radiation?
- Info Loss Puzzle: can lowest area quantum be a remnant ? Even so, how do we get back lost info ?

Pending Issues

- $\mathrm{IH} \rightarrow$ Dynamical Hor unclear: Hawking radiation?
- Info Loss Puzzle: can lowest area quantum be a remnant ? Even so, how do we get back lost info ?
- How does LQG resolve black hole singularities ?

[^0]: Laws of bh mech Bardeen, Carter, Hawking 1972

