

Untangling the Cosmic Web

Aseem Paranjape Inter-University Centre for Astronomy & Astrophysics (IUCAA), Pune

> DTP Colloquium, TIFR February 11, 2020

(in collaboration with Oliver Hahn, Ravi Sheth, Sujatha Ramakrishnan, Shadab Alam, Bhaskar Arya)

Standard Model of Cosmology

Growth of Structure

Sloan Digital Sky Survey

Matter density

Growth of Structure

Standard ΛCDM cosmology.

Collisionless cold dark matter.

Newtonian selfgravity.

Dark Cosmic Web

Self-similarity

Self-similarity

WMAP7

 $\Omega_{\rm m} = 0.276, h = 0.7, \sigma_8 = 0.811$ $L_{\rm box} = 150h^{-1}{\rm Mpc}, N_{\rm part} = 1024^3$

 $L_{\rm box} = 200h^{-1}{\rm Mpc}, N_{\rm part} = 1024^3$

Self-similarity

$$\delta(\mathbf{x}) = \rho(\mathbf{x})/\bar{\rho} - 1$$

$$\delta(\mathbf{k}) = \operatorname{FT} \left[\delta(\mathbf{x})\right]$$

$$P(k) \sim \langle \mid \delta(\mathbf{k}) \mid^2 \rangle$$

Dark matter physics

 $wdm \rightarrow warm$ dark matter (Bode+ 2001, Viel+ 2005, Schneider+ 2012)

bdm → **ballistic** dark matter (Das+ 2019; see also Cyr-Racine+ 2016, Vogelsberger+ 2016)

Dark matter physics

cold DM

Dark matter physics

cold DM

Dark matter physics

Tracers of matter

Dark Haloes as Cosmic Tracers

 $m \, > \, 10^{12} \, h^{\, -1} M_{\odot}$

 $m_{lim} (h^{-1}M_{\odot})$

Environment of Cosmic Tracers

Local tidal field & large-scale density

(AP, Hahn & Sheth 1706.09906)

 $\alpha \sim$ anisotropy of local tidal field *(defined at few x halo size)*

 $b_1 \sim$ large-scale halo-centric density (defined at $\gtrsim 30h^{-1}{
m Mpc}$)

Environment of Cosmic Tracers

Local tidal field & large-scale density

(AP, Hahn & Sheth 1706.09906)

 $\alpha \sim$ anisotropy of local tidal field *(defined at few x halo size)*

 $b_1 \sim$ large-scale halo-centric density (defined at $\gtrsim 30h^{-1}{
m Mpc}$)

Environment of Cosmic Tracers

Local tidal anisotropy & large-scale bias

(AP, Hahn & Sheth 1706.09906)

Tidal Anisotropy Explains Assembly Bias

 $\beta \sim \text{anisotropy of halo velocity dispersion}$ $c_v/a_v \sim \text{asphericity of halo velocity ellipsoid}$ $c/a \sim \text{asphericity of halo shape}$ $c_{\text{vir}} \sim \text{concentration of halo density profile}$ $\lambda \sim \text{halo angular momentum}$

(Ramakrishnan+ 1903.02007)

Cosmology with the Cosmic Web

Cosmic Web as Cosmic Probe

Galaxy Clusters

Redshift-Space Distortions

 $cz_{obs} = Hax + v_{pec,\parallel}$

Lyman- α Forest Weak Lensing Voids

/oids ··

- All probes use biased tracers of dark matter.
- Tracer ↔ DM mapping is nuisance for cosmology, key variable for galaxy + IGM evolution studies.

Baryonic Acoustic Oscillations

Sound horizon at last scattering

image courtesy: Brookhaven National Lab

Cosmic Web as Cosmic Probe

Voronoi Volume Function

A new probe of cosmology and galaxy evolution

(**AP** & Alam 2001.08760)

Conclusions

- ★ Cosmic web evolution is a rich source of multi-scale, non-linear cosmological information
- ★ Probed by biased tracers, whose properties must be understood for cosmological use
- ★ Voronoi volume function: probes both cosmology and galaxy evolution.