
Regular Expressions

... a powerful tool in a skilled hand

15. 10. 2010

Agenda

� Introduction
� Special Characters
� Sets
� Character Classes
� Simple examples
� Multipliers
� Number Quantifiers
� Subexpressions
� Regex in PHP
� Regexp in real use
� Try Out ...
� Read more...
� Q/A

Introduction

� A pattern that either matches or doesn’t match a given string or

substring. Result of comparison will either be true or false.

art :: matches art in 'art', 'article' , 'artifact', 'martial', 'cart', 'mart'

� Use and syntax of regex is the same across many Unix

programs (vi, sed, awk etc.) and programming / scripting

languages(Perl , Java, PHP etc.)

� Regexp is supported in all major development environments.

� Uses:

� Search for the existence of a pattern
� Validate User Input data in web forms
� Bulk Search and replace at ease.
� String manipulation

Special Characters

� A period (.) - matches any single character
www.ibm.com matches patterns like “www1ibmacom”, ”wwwaibmscom”

� A pipe (|) - either what comes before or what comes after.
jpg|png :: matches 'jpg' or 'png‘

� A caret (^) at the beginning of a regexp - will only match if
it starts at the beginning of the comparison string
^art :: matches 'article' & 'artifact‘ but not ‘mart’

� A dollar sign ($) at the end of a regexp - will only match if it
ends at the end of the comparison string
art$:: matches 'cart' & 'mart‘ but not ‘arts’ ^art$:: matches - 'art'

Special Characters (...)

� All regex are case sensitive unless told not to be so. –
with the use of ‘i’

- "WWW.ibm.com" does not match "www"

"WWW.ibm.com" | egrep -i "www“matches WWW.ibm.com

� A backslash (\) means escape the next character if it is
a special one.

www\.ibm\.commatches exact pattern “www.ibm.com”

\? matches a question mark

\/ matches a forward slash

\\ matches a backslash

Sets

� A character set is a group of characters from which
only one is desired.
[0123456789] – matches any single number

� Sets can use ranges of characters
[4-9] – matches any digit in the range 4 to 9

� A dash can be represented in a set by placing it first
[-aeiou] – matches a dash or a vowel

� A caret (^) at the beginning of a set negates.
[^1-4] – matches any character which isn't 1,2,3 or 4

� To represent a bunch of characters as a single item

alpha :: any letter, same as [A-Za-z].
upper :: any upper-case letter; same as [A-Z].
lower :: any lower-case letter; same as [a-z].
digit :: any digit; same as [0-9].
alnum :: any alphanumeric character; = [A-Za-z0-9].
xdigit :: any hexadecimal digit; = [0-9A-Fa-f].

� If the character after the backslash is not a special one,

then it may be an escape sequence.

\l - Lowercase next character \n - newline character

\r - Return character \s - white space
\S - non white space = ^\s \t - Tab character

Character classes

Simple examples

� \d\d\.\d\d\.\d\d\d\d
matches patterns like “01.01.2000”

� \w\w\w, \d\d \w\w\w \d\d\d\d
matches patterns like “Wed, 21 Jul 2000”

� “.. \[[0-9]\]:” matches patterns like SL [9]: , lQ [5]:

� “[a-zA-Z]99” matches patterns like s99, K99, S99

� “([wx])([yz])” matches 'wy','wz','xy' or 'xz‘

� “([A-Z]{3}|[0-9]{4})” matches three UC letters OR 4 numbers

� s!^(.*)(\r?\n\1)+$!\1!g – deletes similar duplicate lines

Multipliers

Any character or character class can be assigned a

multiplier - say whether a character must exist, is

optional, may exist for a certain minimum or maximum ...

� Plus (+) :: One or more

A+ - A followed by any no. of additional A’s

� Asterisk (*) :: anything

A* - A followed by anything

� Question Mark (?) :: Zero or more occurrences

A? - Either A or no As

� Curly Brackets({}) :: A specific range of occurrences

A{2,4} - 2 As or more but no more than 4.

[[:digit:]]{1,6} - 1 number (0-9) or more, but no more than 6.

Number Quantifiers

� Specify number of occurrences, how many times

previous character should occur.

� G* - 0 or more G

� G+ - 1 or more occurrence of G

� G? - 0 or 1 occurrence of G

� V{5} - Exactly 5 times

� S{3,} - 3 or more ; at least 3

� V{2,3} - from 2 to 3 times

SubExpressions

� A way of grouping characters together.

� Used to reference the entire group at once.

� To group characters, place them within '()'.

(Name) = name ;; (Name)+ = name, namename

A pipe within a subExpression means either the first group of text

or the second (or more).

(Na|me) = Na or me ;; (Name|Date) = Name or date

Back referencing ; reference one or more groups directly. (\)

followed by a no. that specifies which subexpression we want.

(name)\1 = namename

(name|date)\1 = namename or datedate

Regexp in PHP

preg_replace – search and replace

<? php

$string = 'Jul 12, 2000';

$pattern = '/(\w+) (\d+), (\d+)/i';

$replacement = '$1y 21, $3';

echo preg_replace($pattern, $replacement, $string);

?>

Try !!! Swapping '12' to '21' using regexp instead of literal

substitution of 12 by 21

Regexp in PHP

preg_match() – match a pattern – returns 1 for match

else 0.

<?php

if (preg_match("/\bweb\b/i", "PHP is a web scripting language.")) {

echo "A match was found.";

} else { echo "A match was not found."; }

if (preg_match("/\bweb\b/i", "PHP is the best website scripting

language.")) {echo "A match was found.";

} else { echo "A match was not found.";}

?>

Regexp in PHP

split – split a string based on regexp

<? // Delimiters may be slash, dot, or hyphen

$date = "01/05/1970";

list($day, $Month, $year) = split('[/.-]', $date);

echo "Month: $month; Day: $day; Year: $year
\n";

?>

... explore more regex in PHP

Try out

What is $1, $2? What is the end result? Dissect the regexp

and analyse first and predict the result. Then try the code.

<?php

$s = ' PHP web site ';

$s .= ' Gmail ';

$s .= ' IBM ';

$s =
preg_replace('/<a[^>]*?href=[\'"](.*?)[\'"][^>]*?>(.*?)<\/a>/si','$2',$s);

echo $s;

?>

Regexp in real use

� Practical use to check password strength

� <? $password = "Fyfjk34sdfjfsjq7";

� if (preg_match("/^.*(?=.{8,})(?=.*\d)(?=.*[a-z])(?=.*[A-Z]).*$/",
$password)) { echo "Your passwords is strong."; }

� else {echo "Your password is weak."; } ?>

� (?=.*{8,}) - checks if there are at least 8 characters in the
string.

� (?=.*[0-9]) – checks for "zero or more alphanumeric
characters, then any digit". Checks for at least one number.

� (?=.*[a-z]) and (?=.*[A-Z]) looks for LC and UC letter
anywhere.

Regexp in real use

Only allow plain text and URLs – no other

HTML tags or scripts allowed in a textbox

area as input

if (preg_match('#(<script)([^\s]*)#', $caption) ||

preg_match('#(</script>)([^\s]*)#', $caption) ||

preg_match('#(<\?)([^\s]*)#', $caption)||

preg_match('#(\?>)([^\s]*)#', $caption)||

preg_match('#(<\%)([\s]*)#', $caption)||

preg_match('#(\%>)[^\s]*)#', $caption) (

{

DisplayErrorMessage("0", "Invalid Caption
 Caption can

have only plain text and reference URLs
 No other HTML

tags allowed " , "javascript:history.go(-1)");
}

Read more...

� Books

� Mastering Regular expressions by Jeffrey E. F. Friedl (O'Rielly)

� Sams Teach Yourself Regular Expressions in 10 Minutes by

Ben Forta

� Regular Expressions Cookbook by Jan Goyvaerts (O'Rielly)

� Web references

� http://www.regular-expressions.info/

� http://www.phpf1.com/tutorial/php-regular-expression.html

� http://weblogtoolscollection.com/regex/regex.php

�lot many web references

...The best use of regexp ensures that

“only” the desired input gets into the

system, thereby ensuring better security

of the system.

^ Excellent tool for Sysadmins for log

analysis, passwd file search, file

manipulation etc...

ksri@tifr.res.in

(Q/A) / Discussion

