BARC-TIFR Pelletron Linac Facility Beam Time Request @2024

Title of the Experiment: Investigation of the E(5) critical point symmetry in 74Se

Principle Investigator: Dr. Sajad Ali

Local Collaborator / Spokesperson: *Prof. R. Palit* Note: Local collaborator is mandatory for non BARC (NPD) / TIFR (DNAP) user

Collaborators Name:

Dr. Subhendu Rajbanshi, Presidency University, Kolkata
Prof. R. Palit, TIFR, Mumbai
Dr. Gopal Mukherjee, VECC, Kolkata
Dr. Sarmishtha Bhattacharyya, VECC, Kolkata
Dr. S. S. Nayak, VECC, Kolkata
Dr. Soumik Bhattacharya, VECC, Kolkata
Dr. Soumik Bhattacharya, VECC, Kolkata
Dr. H. Pai, ELI-NP, Romania
Dr. S. Nag, IIT-BHU, Varanasi
Dr. Saikat Chakrabarty, VECC, Kolkata
Dr. Sutanu Bhattacharya, Hebrew University, Israel
Mr. Vishal Malik, TIFR, Mumbai
Dr. Piku Dey, TIFR, Mumbai
Dr. Ananya Kundu, TIFR, Mumbai
Mr. A. Sindhu, TIFR, Mumbai

Motivation of the experiment:

Beam details: Beam spices, Beam energy in (MeV), Beam current in (pnA), Beam Port.: 7Li, 35MeV, 2-3pnA, Beam Hall 2, 15D

Buncher requirement: Yes/ No

Number of shifts (1 shifts=8 hr.) required:

Experimentdetails:

Objective of Experiment:

Phase transitions in the different state of matter have become one of the most spectacular subjects that have been investigated over years in any branch of Physics. Like other physical systems, atomic nuclei are also expected to exhibit the phase transitions. The phase transition in nuclear system has been well described using quantum mechanics within the IBM calculations. Two distinct critical phase transitional points have been identified in the pathway of the spherical to deformed one. One critical point is situated in between the spherical and the gamma vibrational limit that has been termed as E(5) symmetry breaking. Other one fall in the path of gamma vibration to deformed system and that has been described as X(5) critical point [1-3]. Recently, several experimental and theoretical

investigations have been performed to reveal the X(5) and E(5) critical point nuclei all over the nuclear chart. Indeed, the experimental evidences in ¹⁵²Sm, ¹⁵⁰Nd and ¹⁵⁴Gd nuclei strongly support their X(5) behaviour [4 – 7] whereas E(5) critical point has been identified in ¹³⁴Ba and ¹²⁸Xe only, until today [8 – 11]. Therefore, more investigations are required to reveal the complete intrinsic characteristic of such a critical point nuclear system. Recently we have also established a Experimental evidence of exact E(5) symmetry in ⁸²Kr [14]. Using our experimental data, theoretically by the Vibron model **Yu Zhang et. al.** has shown that the low-lying structure of ⁸²Kr can serve as an excellent empirical realization of the E(5) Dynamical Symmetry, which provides a specific example of the Euclidean DS in experiments [15]. This prompts our motivation of examining the critical point nuclei throughout the nuclear chart to get complete picture of the phase transitional behavior.

Fig 1. The low-lying structure of 82 Kr. The experimentally obtained states [13] compare with the results solved from the E(5) Hamiltonian [14].

The present experimental proposal focuses to investigated the E(5) critical point symmetry in ⁷⁴Se nucleus [16]. The experimental $R_{4/2} = 2.15$ for ⁷⁴Se which are close to the predicted value of 2.20 [11]. The previous measurement on this nucleus extracted the B(E2) transition rates of the ground state band up to the 6⁺ state and within the error bars transition strength are in well agreement with the E(5) prediction [11]. The low lying structure of these nucleus has very similar to the established E(5) nucleus ⁸²Kr. These signatures predicted that ⁷⁴Se would be the next candidates of the island of E(5) limit, more specially, exploring a new mass region in the periodic table.

Fig 2. The low-lying structure of 74 Se. representing the E(5) symmetry braking phenomena. The data were taken from the reference [16].

References:

- [1] F. Iachello, Phys. Rev. Lett. 853580 (2000).
- [2] F. Iachello, Phys. Rev. Lett. 87052502 (2001).
- [3] R. F. Casten and E A McCutchan, J. Phys. G: Nucl. Part. Phys. 34 (2007) R285 -
- R320 and references therein.
- [4] R. Krcken et al., Phys. Rev. Lett. 88 232501 (2002).
- [5] D. Tonev et al., Phys. Rev. C 69 034334 (2004).
- [6] A. Dewald et al., Eur. Phys. J. A 20 173 (2004).
- [7] D. L. Balabanski et al., Int. Jour. of Mod. Phys. E Vol. 15, 1735 (2006).
- [8] R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 85 3584 (2000).
- [9] J. M. Arias, Phys. Rev. C 63 034308 (2001).
- [10] R. M. Clark et al., Phys. Rev. C 69 064322 (2004).
- [11] P. Kemnitz et al., Nucl. Phys. A 425) 493 (1984.
- [12] L. Funke et al., Z. Phys. A 324, 127 (1986).
- [13] L. Funke et al., Nucl. Phys. A 455 206 (1986).
- [14] S. Rajbanshi et. al., Phys. Rev. C 104, L031302 (2021).
- [15] Yu Zhang et. al., Symmetry 14, 2219 (2022).
- [16] R. B. Piercey, et. al., Phys. Rev Lett 37, 9 (1976).

Description of Experiment:

The ⁷⁴Se nucleus will be populated through the fusion evaporation reaction of ⁷Li at energy 35 MeV with the ⁷⁰Ge as target. The PACE4 calculation shows that this stable target and projectile combination produces the ⁷⁴Se with large cross-section ~ 600 mb, demanding almost 45% of the total fusion cross-section (Fig. 3). Such a large cross section will be useful

to determine the non-yrast states which are utmost important to establish the E(5) behavior. The residual nuclei populated in this reaction have velocity almost 1% of c. This ensures the applicability of the Doppler shift attenuation method to determine the sub picosecond level lifetimes for the structure of interest. To extract the level lifetime from DSAM we have to use a backed target.

Fig. 3. The PACE4 predicted cross-section of the nuclei produce in the fusion reaction of ⁷Li beam on ⁷⁰Ge energies.

The planning of experimental needs is given in Table:

Characteristic	Desired quantities/Description
Nucleus of Interest	⁷⁴ Se
Projectile	⁷ Li
Energy range	33-36 MeV
Beam Current	1-2 pnA
Target	⁷⁰ Ge of Tantalum Backing
Target Thickness	0.5 mg/cm ²
Backing Material	Natural Tantalum
Backing Thickness	7.5 mg/cm ²
Coulomb Barrier of the ⁷ Li and with targets	13.6 MeV
Energy loss of ⁷ Li (@ 35 MeV) inside target and projected range	400 keV/(mg/cm²) & 103.7 μm
Velocity of the compound nucleus (⁷⁷ Br)	~ 1% of c
Compound nucleus recoil energy (MeV)	3.2 MeV

Energy loss of compound nucleus inside target	4.5 MeV/(mg/cm ²)@ 3.2 MeV
Energy loss of compound nucleus inside backing	2.2 MeV/(mg/cm ²)@ 3.2 MeV
Cross section of the ⁷⁴ Se nucleus	600 mb (45%) of total 1336 mb [@ 35 MeV]
Beam time Required	15 Shift

Calculation for number of Shift:

M = Number of photons emitted per event ~ 20

 $(\Omega/4\pi)$ = Solid angle coverage by a Clover = 0.12/4 π (Clover rad = 46mm, detector dis. = 25cm)

 ε_{int} = Intrinsic γ detection efficiency of a Clover = $\varepsilon_{abs}(4\pi/\Omega) \simeq 1.2 \times 10^{-3} \times 1.3 \times 4\pi/0.12 \simeq 0.16$

(Assuming Clover Addback efficiency ~ 130%)

N _r = Number of residual nuclei produced per Sec. = σ N_B N_T

Where: $N_B = No.$ of Beam incident per sec. = 2 pnA/e x $10^9 = 1.25 \times 10^{10}$

 N_T = No. density of target nuclei per volume x thickness of the target = N x t

Where N = N_A x ρ/M = 6.023 x 10²³ x 5.327/70 per cm³ = 4.58 x 10²⁸ /m³, (ρ = 5.327 gm/cm³)

$$t = \frac{0.5 \text{ in } mg/cm^2}{5.327 \text{ in } g/cm^3} = \frac{0.5 \times 10^{-3}}{5.327} \text{ in } cm = 9.39 \times 10^{-7} \text{ in } m$$
$$N_T = N \text{ x t} = 4.58 \text{ x } 10^{28} \text{ x } 9.39 \times 10^{-7} \text{ per m}^2 = 4.3 \text{ x } 10^{22} \text{ per m}^2$$

$$N_r = 600 \times 10^{-31} \times 1.25 \times 10^{10} \times 4.3 \times 10^{22} = 3.23 \times 10^4 / sec$$

2- fold coincidence rate for 2 Clover: N $_{12}$ = M(M-1) N_r ($\Omega/4\pi$)² ε_{int}^{2}

$$= 20 \times 19 \times 3.23 \times 10^4 \times (0.12/4\pi)^2 \times (0.16)^2$$

~ 29 /sec

For 16 Clover array = 8 x 29 /sec = 232 /sec

So in 15 shift (5 days) 2 fold events acquired = $232 \times 3600 \times 15 \times 8 = 1.0 \times 10^8$ events.

Details of paper published based on experiments at PLF since 2021:

1. S. Rajbanshi et al., Physical Review C (Letter) 104, L031302 (2021).

2. S. Rajbanshi et al., Physical Review C 104, 064316 (2021).

3. Rajkumar Santra et al., Physical Review C 107, 064611 (2023); DOI: 10.1103/PhysRevC.107.064611