

HEP JOURNAL CLUB

Trigger and DAQ for HEP Experiments

A brief introduction : Concepts and Terminologies

Aravind T S
Grad Student, CMS@TIFR

Agenda

KEY TOPICS DISCUSSED IN THIS PRESENTATION

- What is DAQ , importance , from physics to Taking the relevant data
- History bubble chamber girls / Spark chambers / CG17
- Common instruments used
 - Digitization
 - ADC / TDC / Comparators / Logic Gates
 - Delay lines / Ring Buffer / Memory
 - Transfer protocols
 - Technological limitations limitations
 - Typical data handling rates
 - Deadtime and DAQ Preassure
- DQM :
 - Concepts
 - o Anomaly detection, make sum bad joke on ML, refer to Mintus commads
- Collider example
 - Focus on CMS / Belle as proxy
 - Gets time will do Cosmic ray some other time

HEP Experiments

PLANNING OF THE EXPERIMENT

Physics Goal:

- Search for a Dark matter candidate
- Identify the mass ordering of neutrinos
- Find Higgs
- Precision Measurements

Design the Detector Concept

- Conceptualization of the detector components
 - Momentum measurements ?: tracker
- Understanding what signatures to search for

Data Aquisition Considerations

- Estimation of detector occupancy
 - Estimation of Data Flow Rates
 - Affordable Dead time?
 - Affordable Event Size ?
 - Storage Limitations ?

CMS Experiments

SOME CONSIDERATIONS

Physics goal @LHC

- Precision Electroweak measurements
 - precise momentum measurement and vertexing of charged particles
 - Excellent Calorimetry

Detector Concept @ CMS:

- n Si Tracker layers at high 4T
 - CMS Pixel Detector

Challenge

- 77 Million channel
 - Each says Hit/Not Hit
 - --> > 1 Mb in a single read out at 1% occupancy!!

LHC Experiments

SOME CONSIDERATIONS

- Bunch crossing rate: 40MHz
 - front-end electronics ready every 25 nano-sec.
- Luminosity at IP 1e34 /cm2/sec
 - o p-p cross section: 80 x le-27 cm2
 - Rate --> 0.8 GHz !!
- A single event is approx 1.0 MB
 - ~800 TB/s data-flow for readout
 - realistically its approx 80 TB/s

Challenge: Store and process the data for achieving the physics goals

- Is all of this 80 TB required for achiving the physics goal?
- More data stored --> more data to analyze/ more network+compute usage
 - Global Warming!

DAQ: Rates and Deadtime

- Dead time The time lost in DAQ when Read out is not possible
- We can control the trigger rates by adjusting the logic
- We want to maximize the ratio of R_{out} / R_{in}
 - Read Out Rate from Trigger Rate

Time DAQ is supposed to be busy
$$= R_{in} * T_d$$

Farction of Events Lost $= R_{out} * T_d$

$$ext{Farction of Events Read} = (1 - R_{out} * T_d) \
ightarrow R_{out} = (1 - R_{out} * T_d) * R_{in}$$

$$\frac{R_{out}}{R_{in}} = \frac{1}{1 + R_{in} * T_d}$$

$$R_{in}$$
 = Trigger rate (average)
 R_{out} = Readout rate
 T_d = processing time of one event

Understanding the Need for trigger from *deadtime*

- Assume there is no trigger logic in place
 - We **try** to readout all events
- Rate of Events = R_{ln} (= 1000 Hz)
- Rate of the physics process we want to study
 - 10 Hz ($R_{in}^{physics} = 10 Hz$)
 - What is the Efficiency we expect ??

$$rac{R_{out}}{R_{in}} = rac{1}{1 + R_{in} * T_d}$$

DAQ With Buffers

Challenge : Huge event rates ⇒ Available processing time ~ 50 ns

- Temporarily store data in memory while trigger decision is made
 - First in First out : FIFO
 - Ring buffer
 - Require very high speed memory
 - Costly [very costly]
 - CMS has 128 Bx buffer
 - 25 ns x 128 ⇒ 3.2 mu sec

DAQ With Buffers

Buffers and Time Multiplexed Triggers

Buffers and Time Multiplexing

Aravind T S | Journal Club

6

Deadtime?

- If buffer is long enough, the trigger decision is available by the time the buffer gets filled up
 - So is there no dead time possible now ?

Deadtime and DAQ Backpressure

- If buffer is long enough, the trigger decision is available by the time the buffer gets filled up
 - So is there no dead time possible now ?
 - Capped by the buffer to Network readout bandwidth
 - 100 GB/s with 1 MB per event : ~ 10 mu sec of readout from buffer
 - \circ As the next positive trigger decision comes , the event might not be there in the ring buffer $$\frac{R_{out}}{}$$
 - DAQ Backpressure
 - Inability to sustain the dataflow

Aravind T S

 R_{in}

Event Re-Building and Storage

- Collects the information into a single object
 - Merges the headers and messages to an Event
- Custom Hardware boards designed
 - For very high throughput

Technologies Used: Readouts and Trigger

- Depending on the detector, readout devices vary
 - Radiation hard electronics when sitting very close to the IP
 - Costly
- Generic devices used at front end
 - qADCs : Analog to digital converters [Calorimeter]
 - TDCs: precision timing measurements [Muon chambers / trackers]
 - Digitizers

Technologies Used: Readouts and Trigger

- Depending on the detector, readout devices vary
 - Radiation hard electronics when sitting very close to the IP
 - Costly
 - Custom ASICS
 - Trigger logics are implemented FPGAs
 - FPGAs are configurable electric boards
 - You can code your logic in the language of your choice
 - Convert it into a circuit : Tools in place to do this
 - FPGA provides an array of gates that can be connected based on choice
 - Actually a bit more complex than this: Implemented as LUTs
 - FPGA market a monopoly by Xilinx [bought by AMD now]: so things are costly
 - Intel also entering the field now
 - Implementation of CPUs inside FPGAs make them much more versatile
 - SoCs : System on Chip

Single Bit Upsets

Technologies Used: Storage

- After DAQ (+ Trigger) the data is copied to the tape for permanent storage
- Tapes : <u>Archival Storage for Scientific Computing</u>

Comparing tape and disk

	Tape	Disk
Data transfer rate	400 Mb/s	200 Mb/s
Positioning type	Fast Sequential Access	Fast Random Access
Average positioning time	30 seconds (610 m @ 12 m/s)	5 milliseconds
Latency to first byte	A few minutes	5–10 milliseconds

Advantages of Tape : Reliability and Data Security

- Two heads are better than one : read after write verification
- No data loss if a drive fails
- Immutable files
- Air-gap security
- Long media lifetime (30+ years)

Multi Level trigger system

- For very large Data rates , a hardware trigger is not enough
 - For looking for complex signatures
 - Cross detector information
- Usually a CPU Farm sits over the hardware trigger layer that can do a full event reconstruction, or do a quick quick physics analysis.
- For CMS the 100 GB/s from the hardware to ~ 10 GB/s of good physics data

- Some exotic developments you can read on
 - Triggerless DAQ for Alice Experiment
 - LHCb trigger upgrade that uses GPUs to do full HLT on all readout events [TDR]

Organization of Trigger bandwidth

- Bandwidths allotted to each physics searches based on the global strategy of the experiment
 - Would charge change time to time and new deviations comes popping up
- Generaal Calibration and Monitoring triggers
- Analysis specific triggers
- Trigger bandwidth for physics groups

Some Readings

- Synchronous and Asynchronous trigger
- Grapes example
 - An Advanced Triggerless Data Acquisition System for GRAPES-3
 Muon Detector
- Event triggering in the IceCube data acquisition system